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Detection of human leukocyte antigen class I loss of heterozygosity in solid tumor types 
by next-generation DNA sequencing

BACKGROUND

Human leukocyte antigen (HLA) class I proteins are 
expressed on the surface of all nucleated cells and 
are vital for immune surveillance. When tumor-
specific mutations (neoantigens) are presented on 
HLA molecules to CD8+ T cells, this recognition can 
drive immune responses against the tumor and lead 
to tumor destruction. One mechanism of immune 
escape for tumors is loss of heterozygosity in HLA 
genes (HLA-LOH), which reduces the total number of 
neoantigens available for presentation to T cells. Due 
to the highly polymorphic nature of HLA, the copy 
number status of HLA genes is extremely challenging 
to assess by standard bioinformatics approaches. To 
investigate the prevalence of HLA-LOH, we 
developed a specialized pipeline to detect HLA-LOH 
by DNA next-generation sequencing (NGS).
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METHOD DEVELOPMENT RESULTS (BIOLOGICAL CONFIRMATION)

CONCLUSIONS

• We developed a method of determining HLA-LOH by DNA NGS and 
demonstrated that HLA-LOH is a readily detectable feature in 
human tumors. 

• By assessing HLA LOH across a range of cancer types from a 
published cohort, we find that there is variability in the prevalence of 
HLA LOH across different cancer types.  

• While there is some pan-cancer association between HLA-LOH and 
TMB, further analysis must be done to determine the nature of the 
interaction.

• Using flow cytometry we can confirm that the signal detected by the 
algorithm results in a biologically-relevant loss of protein.

• These results highlight the complexity of antigen presentation, the 
potential importance of HLA-LOH as a biomarker of immunotherapy 
response and resistance, and lays the groundwork for future 
investigations.
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Class I HLA alleles are highly 
polymorphic and most 
individuals have two distinct 
alleles for each HLA gene.  Each 
allele allows for presentation of a 
unique pool of short peptides (8-
11 amino acids) derived from the 
cellular products being made by 
each cell in the body. When an 
HLA allele has the capacity to 
present a peptide derived from a 
tumor-derived somatic mutation, 
this is known as a neoepitope. 

HLA Loss of Heterozygosity is a potential escape mechanisms 
for tumors under immune pressure, where tumors can lose one 
copy of HLA, and thereby avoid presenting potent neoepitopes 
(Tran 2016, McGranahan 2017, Chowell 2018).  

As immunotherapies become increasingly targeted to specific 
tumor targets, this could be an especially important escape 
mechanism to identify in target populations.

Figure 1: Schematic of how HLA 
Loss of Heterozygosity can 
potentially lead to escape of 

immune pressure

The HLA LOH Algorithm takes as 
inputs BAM files from a matched 
Tumor and Normal Sample, as 
well as a four digit HLA type 
(similar to those generated by 
Optitype/Kourami/etc).  A full 
length HLA sequence is not 
required. 

The Algorithm then maps all HLA 
mapping reads as well as all 
unmapped reads to a new HLA 
reference. After accounting for 
potential germline variants present 
in the sample’s HLA, it updates 
alignments and determines allele 
specific coverage.

Figure 2: Schematic of HLA LOH 
Algorithm.  The Algorithm takes as 

inputs Paired Tumor Normal 
Sequencing data, HLA Type 

information, as well as tumor purity 
and ploidy information.  The output is 
a prediction of LOH status for HLA-A, 

HLA-B, and HLA-C.  

By comparing changes in coverage between alleles, in the 
context of the expected tumor purity, the algorithm then 
determines whether any reduction in allele coverage is 
consistent with a clonal loss of a specific HLA allele.

Leveraging Tumor Normal Sequencing
Because we perform paired-tumor normal sequencing, 
we are able to leverage the relative HLA coverage in 
the patient’s normal sample to serve as a reference for 
the expected coverage in an HLA stable tumor.  

Positional Feature Generation
Once we have allele specific coverage, we then 
calculate higher order features that help us describe the 
relative differences allele coverage.  These include B 
allele frequencies (BAF) and Log Coverage ratios 
between the Tumor and Normal sample (Figure 3). 

Gene Feature Generation
The initial intuition is to think that we can only 
distinguish the two HLA alleles at nucleotides where 
they differ in sequence. However, because these 
alignments are based on from a much longer NGS 
reads we can actually infer the allele of origin for reads 
mapping to bases where the two alleles are identical 
based on the presence of distinguishing polymorphisms 
elsewhere in the read.

Model Improvements
The core of the algorithm hinges on accurately 
identifying HLA mapping reads and correctly assigning 
them to one of the patients HLA alleles.  As such, we 
are careful to control for any potential germline variation 
the patient may have from the reference HLA 
sequence, or potential cross-mapping caused by 
pseudogenes.  Finally, because many aligners have 
trouble correctly aligning HLA reads due to the high 
degree of homology, we also rescue HLA reads from 
the unmapped reads pool (Figure 4).  

Figure 3: Representative sample with strong HLA 
Loss of Heterozygosity. The predicted lost allele and 
the predicted stable allele are highlighted in red and 
blue respectively.  Light colors indicate areas of low 
coverage, and dots indicate positions where the two 

reference sequences diverge

Figure 4: Examples of how various model improvements 
lead to more robust alignments and less noisy signal. for 

downstream analysis  

The prevalence of HLA LOH across cancer types
We first wanted to assess the relative prevalence of HLA 
LOH across a range of different cancer types. To address 
this we ran our algorithm on Tempus’ recently published 
pan-cancer xT 500 cohort (Beaubier 2019).  
Overall, we found that prevalence varied between different 
cohorts, with Lung and Colorectal cancer having the 
highest rates of LOH and Prostate and Brain having the 
lowest (Table 1)

HLA LOH occurs across the entire locus
We next wanted to better understand the nature of LOH in 
these samples.  One feature that stood out was the fact 
that in the majority of cases (44/80), when LOH was 
observed at one gene in the HLA locus it was also 
observed across the other genes in that locus, suggesting 
that the Class I locus is often lost together (Figure 5). 

Association between HLA LOH and TMB
Given the use of Tumor Mutational Burden (TMB) as a 
pan-cancer metric for assessing tumor antigenicity, we 
were curious whether samples with high TMB would be 
more likely to undergo HLA LOH. In this cohort, there was 
a weak association between HLA LOH and TMB. Given 
the previous observation that certain cancer types in this 
cohort (ie. lung and colorectal) have a higher prevalence 
of HLA LOH, and those cancer types are known to have 
higher TMBs on average, it is possible that this 
association is mainly being driven by that effect.  When 
we look more closely at the association within cancer type 
the association is less pronounced or absent. (Figure 6)

Cancer Cohort Percent with LOH Number of Sample
Colorectal 30% 50

Lung 26% 50
Ovarian 20% 50
Breast 16% 50

Pancreatic 10% 50
Brain 8% 50

Endometrial 8% 50

Figure 5: Predicted LOH status across cohort. Each column 
represents a sample, with the LOH status of each HLA gene 
shown as Predicted LOH (red), Predicted Stable (blue), or 

Homozygous (grey)

Table 1: Prevalence of HLA Loss of Heterozygosity 
across the xT 500 cohort

Figure 6: Association between TMB and LOH status.  
Comparing the log normalized TMB between samples with no 

HLA LOH (blue) and predicted HLA LOH (red), significance 
determined by Student’s T test.

Figure 7: A. Experimental design to confirm HLA 
LOH NGS results.  Overview of HLA LOH NGS data 

for Normal sample, Original Tumor, and Tumor-
derived Organoid.   B. Flow cytometry experiment 

showing the expression of the Stable and Lost allele 
relative to a pan HLA antibody.  Gated on Live cells. 

We wanted to confirm that our LOH 
algorithm was identifying a biologically 
relevant LOH event. From our internal 
library of tumor derived organoids, we 
were able to identify a tumor organoid 
with very strong LOH (Figure 7A).  

As a first pass, we assessed the LOH 
by NGS in both the healthy control, 
bulk DNA sequencing, and tumor-
derived organoid sequencing.  While 
we still detect residual A*02:01 signal 
in the bulk sequencing, the A*02:01 
reads are almost entirely absent in the 
organoid, likely due to an absence of 
healthy normal tissue.  

Because there is an antibody clone 
that can specifically detect the lost 
A*02:01 allele (BB7.2) we could 
actually confirm that this predicted 
LOH resulted in a loss of HLA-
A*02:01 protein expression on the 
tumor-derived organoid.  

Staining of the organoid sample, 
relative to control PBMC populations 
found that while the tumor-derived 
organoid retained strong expression 
of A*03:01, expression of A*02:01 was 
no longer detectable. 
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