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•	Direct tumor cell killing in non-small cell lung cancer (NSCLC) 
is thought to occur through cytotoxic CD8+ T cells, which 
recognize antigen presented via class I human leukocyte 
antigen (HLA-I). 

•	Downregulation of HLA-I antigen presentation facilitates 
immune evasion and confers an evolutionary advantage to 
the tumor. The rate of loss of heterozygosity at the HLA-I 
locus (HLA-LOH) has been reported as high as 40% in NSCLC 
patients and has been associated with worse survival on 
checkpoint inhibitor (CPI) regimens.

•	However, some patients still respond to CPI, despite 
experiencing downregulation of HLA-I in their tumor. This 
suggests that a HLA-I independent pathway for anti-tumor 
immunity exists. 

•	CD4+ T cells recognize antigen via class II HLA (HLA-II) rather 
HLA-I, but their cytotoxic ability in NSCLC tumors remains 
poorly characterized. 

We characterize a population of CD4+ T cells with a cytotoxic 
phenotype that is associated with effective anti-tumor 
immune responses.
 

•	Cytotoxic CD4+ T cells are present in the tumor infiltrating immune 
compartment in NSCLC patients.

•	Cytotoxic CD4+ T cells upregulate immune checkpoint genes and are 
clonally expanded.

•	NSCLC tumor cells can present antigen directly to cytotoxic CD4+ T 
cells via HLA-II.

•	An RNA signature of cytotoxicity is associated with CPI response in 
NSCLC, independent of HLA-I status. 

 

Figure 1: Single cell RNAseq identifies a subset of tumor 
infiltrating cytotoxic CD4+ T cells in NSCLC
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Single Cell Profiling 

•	Single cell profiling using the 10X Genomics Chromium 
platform was performed on 10 NSCLC dissociated tumor 
samples.

•	Samples were split into CD45+ and CD45- fractions and single 
cell RNA sequencing was performed on both fractions. Single 
cell TCR and cell surface protein profiling were also performed 
on the CD45+ fraction.

•	Raw sequencing files were processed through the 10X 
CellRanger pipeline and then analyzed using scanpy1 and 
scirpy2. Scrublet³ was used for doublet detection and BBkNN⁴ 
was used for batch correation. HLA typing and quantification 
was performed using ArcasHLA⁵ and scHLAcount⁶.

Real World NSCLC Cohort Analysis

•	We used the Tempus Labs oncology database to identify 
148 de-identified records of patients with metastatic, non-
squamous NSCLC who were treated with an FDA approved 
CPI regimen. 

•	Samples were profiled using targeted oncology panel 
sequencing or whole exome DNA sequencing, and whole 
transcriptome RNA sequencing on CPI naïve tumor samples.

•	Response to therapy was evaluated using time to progression 
(TTP), defined as the time from CPI start to the first progression 
event, censored on the last known physician encounter.

Figure 1. a) Schematic overview of the experimental design.  
b) Gating strategy for the computational isolation of the CD4+ T cell 
compartment. c) Non-negative matrix factorization (NMF) identified distinct 
transcriptional programs in the CD4+ T compartment. UMAP projection 
shows the cells labeled based on the most highly weighted transcriptional 
program.

Figure 3: Cytotoxic CD4+ T cells are clonally expanded in NSCLC

Figure 4: A subpopulation of tumor cells express HLA-II in 
NSCLC, allowing for direct antigen presentation to CD4+ T cells

Figure 4. UMAP projections show the expression of a) HLA-I and 
b) HLA-II in the CD45- fraction. c) Heatmap shows the expression 
of HLA-I, HLA-II and key lineage markers. d) Boxplots show the log 
transformed expression of the individual HLA-II genes assessed 
(p<0.0001, Kruskal-Wallis). e) Expression of HLA-II and its’ chaperone, 
CD74 (invariant chain) is highly correlated (R=0.627, p<0.0001, Pearson 
correlation). 

Figure 5: Gene signature of cytotoxicity is associated with CPI 
response in a real world NSCLC cohort, irrespective of HLA-I status

Figure 5. We developed a 20 gene signature for cytotoxicity. KM plots show 
that the cytotoxic score (CS) is significantly associated with TTP in the a) 
Tempus NSCLC CPI cohort (HR=0.42), including patients in the b) HLA-I 
deficient (LOH, homozygous or B2M mutation) sub-cohort (HR=0.16). c) CS is 
not associated with survival in the TCGA lung adenocarcinoma (LUAD) cohort 
(HR=0.99), which was primarily treated with chemotherapy. d) Combining 
CS with TMB into a simple multimodal model (MM) improves CPI response 
prediction compared to either biomarker alone (HR=0.37). e) TMB and CS are 
not significantly correlated (R=0.031, p=0.71, Pearson correlation). 

Figure 2. a) Heatmap of key cytotoxic and immune checkpoint gene expression in 
cytotoxic CD4+ T cell program. b) UMAP projections display the distinct patterns 
of expression for key cytotoxic genes. c) Expression of checkpoints, IFNG, PDCD1, 
and LAG3, is higher in the cytotoxic population compared to the other CD4+ T 
cells (p<0.0001, p<0.0001, p<0.0001, Mann Whitney U). 

Figure 2: Cytotoxic CD4+ T cells have heterogenous expression 
patterns of cytotoxic genes and upregulate IFNG and PDCD-1

Figure 3. a) UMAP projection showing the clone size associated with the 
TCR for each cell. b) TCR diversity, as measured by Shannon entropy, for 
each NMF cluster. c) Log transformed TCR clonotype size of the cytotoxic 
CD4+ T cell population compared to other CD4+ T cells (p<0.001, Kruskal 
Wallis).
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