Landscape of KRAS^{G12C}, Associated Genomic Alterations, and Interrelation With Immuno-Oncology Biomarkers

Mohamed E. Salem¹, Sherif M. El-Refai², Wei Sha¹, Axel Grothey³, Alberto Puccini⁴, Thomas J. George⁵, Laura W Musselwhite¹, Kunal Kadakia¹, Jimmy J. Hwang¹, Eric Van Cutsem⁶, Josep Tabernero⁷, Derek Raghavan¹, and Jeanne Tie^{8,9} ¹Levine Cancer Institute, Charlotte, NC, USA; ²Tempus Labs Inc, Chicago, IL, USA; ³IRCCS Ospedale Policlinico San Martino, Genoa, Italy; ⁴West Cancer Center, Germantown, TN, USA; ⁵University of Florida, Gainesville, FL, USA; ⁶University of Leuven, Belgium; ⁷Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona, Spain; ⁸ Peter MacCallum Cancer Centre, Melbourne, Australia; ⁹Walter+Eliza Hall Institute of Medical Research, Parkville, Australia

INTRODUCTION

KRAS is the most common driver oncogene. Promising singleagent activity from sotorasib and adagrasib in *KRAS*^{G12C}mutant tumors has provided clinical evidence of the ability to inhibit *KRAS* signaling. However, the landscape of *KRAS*^{G12C} mutations and associated characteristics across cancer types are not well characterized.

We aimed to 1) Investigate the prevalence of KRAS variants, including *KRAS*^{G12C}, **2)** Describe prevalence of co-mutations with *KRAS*^{G12C,} and **3)** Describe the relationship of *KRAS*^{G12C} with immuno-oncology (IO) biomarkers.

METHODS

We retrospectively selected and analyzed de-identified clinical records with Tempus xT tissue- and xF liquid biopsybased NGS data from 79,004 patients with various cancer types utilizing the Tempus LENS Data & Analytics Platform. From 79,004 samples analyzed, 13,758 KRAS-mutated tumors were identified (**Table 1**).

Fisher's exact test was used to analyze the associations between cancer subtypes and *KRAS* variants. Logistic regression was used to study co-mutations between *KRAS*^{G12C} and other oncogenes, as well as the association between *KRAS* variants and IO biomarkers. False discovery rate-adjusted P-value (FDR-P) was used for multiple testing.

	KRAS ^{G12C} mutation (n=1,632)	<i>KRAS^{non-G12C}</i> mutation (n=12,126)	
	n (%)	n (%)	FDR-P
Age	573	4444	6.06E-05
<60	157 (27.40%)	1631 (36.70%)	
≥60	416 (72.60%)	2813 (63.30%)	
Gender	1333	10713	0.0006
Female	748 (56.11%)	5428 (50.67%)	
Male	585 (43.89%)	5285 (49.33%)	
Self-Reported Race	802	5955	0.243545
Asian	17 (2.12%)	201 (3.38%)	
Black	107 (13.34%)	759 (12.75%)	
White	678 (84.54%)	4995 (83.88%)	
Smoking	1028	6887	1.87E-68
Current Smoker	257 (25.00%)	972 (14.11%)	
Ex-Smoker	616 (59.92%)	2893 (42.01%)	
Never Smoker	155 (15.08%)	3022 (43.88%)	

Table 1. Clinical Characteristics

Table 1. Comparison of patient characteristics between
 KRAS^{G12C} and *KRAS^{non-G12C}* samples across all cancer types. Of the 13,758 KRAS-mutated tumors, 1,632 (11.9%) tumors harbored the *KRAS*^{G12C} variant, while 12,126 harbored other *KRAS* variants (KRAS^{non-G12C}).

CONCLUSIONS

Our analysis of real-world data from 79,004 patients identified significant genomic and IO biomarker differences in tumors harboring KRAS^{G12C} compared to KRAS^{non-G12C} and wildtype tumors. KRAS variants significantly differed by cancer type with KRAS^{G12C} accounting for 11.9% of all KRAS variants. KRAS^{G12C} was most prevalent in NSCLC, CRC, appendiceal cancer, TUO, pancreatic cancer and SBA, and was more often identified in females, current or prior smokers, and older patients. Oncogenic genes, such as KEAP1, STK11, and ATM, and key IO biomarkers, high PD-L1 expression and high TMB, were also enriched in KRAS^{G12C} tumors.

RESULTS

Figure 2. Comparison of TMB-high (defined as >10 mut/Mb), PD-L1-positive, and MSI-High cases between KRAS^{G12C} and KRAS^{non-G12C} and between KRAS^{G12C} and KRAS wildtype cohorts. TMB, tumor mutational burden; MSI, microsatellite instability. *FDR-P < 0.05 and was considered statistically significant; **FDR-P<0.001; ***FDR-P<0.0001.

ASCO 2021 Abstract 3127

Correspondence: Mohamed Salem, MD; mohamed.salem@atriumhealth.org