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I N T R O D U C T I O N

M E T H O D S

We transferred molecular tumor subtype classifiers across four pairs of
publicly available cancer datasets (bladder, breast, colorectal, and
pancreatic), covering 4,076 samples across 17 different tumor subtypes
and three technological platforms (RNASeq, Affymetrix U133plus2
Microarray, and Human Exon 1.0 ST Microarray). For each pair of
datasets, we trained a subtype classifier on one dataset (target)
according to well-accepted subtyping annotations, and then evaluated
the classifier accuracy on the other dataset (source).

We propose a validation framework that avoids information leakage by
holding out a source subset from both data adaptation and classifier
training. The validation framework randomly splits the source dataset
into two mutually-exclusive subsets: source-A and source-B, such that
the batch correction model is trained on one subset and evaluated on
the other subset, where classifier predictions are generated. The
classification performance is quantified by computing F-1 scores for all
samples in the held-out corrected source-A and B subsets (Figure 2).
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Figure 1. The source and target datasets share privacy-preserving aggregate statistics
(data factors) with SpinAdapt, which computes the correction factors. The correction
factors are applied to the source dataset, followed by application of the target-trained
classifier, without any recalibration of the classifier. Note that sample-level patient data
are never shared between source and target.

• The advent of high throughput gene expression
profiling has powered training of sophisticated
molecular models that capture complex biological
patterns. To ensure the generalization of
molecular patterns across independent studies,
these models need to be validated across
technological platforms and laboratories.

• Even though there is an inherent tradeoff
between performance and privacy, SpinAdapt
preserves data privacy, shows state of the art
performance subtype prediction tasks, and
outperforms similar algorithms that require
sample-level data access for batch effect
correction.

• In contrast to existing algorithms, SpinAdapt
allows the correction of new prospective source
data and enables the application of existing
molecular predictors on new data without model
retraining.

• By sharing privacy-preserving data factors
alongside the model, SpinAdapt allows external
validation and reuse of pre-trained RNA models
on novel datasets, hence improving research
reproducibility across multiple laboratories.

Transferring diagnostic and prognostic molecular models across technological platforms

The reproducibility of results obtained using RNA data across labs is a
major hurdle in cancer research. Differences in library preparation
methods and gene expression quantification platforms prevent the
application of trained RNA models to new data across labs. SpinAdapt
is a novel unsupervised domain adaptation algorithm that enables the
transfer of existing molecular models across labs and technological
platforms, without requiring re-training or calibration of existing
models for future prospective data. Furthermore, SpinAdapt uses
privacy-preserving RNA statistics (independent latent space
representations) to calculate data corrections, rather than requiring
full data access (Figure 1), thereby safeguarding protected health
information (PHI). This allows for transfer of molecular models across
sequencing platforms and labs without loss of data ownership or data
privacy. Here, we analyzed the performance of the SpinAdapt
algorithm and validated it across four cancer types.

Figure 2. A random forest-based classifier was trained on the target dataset and then applied on the held-out source test dataset,
for each of the 17 tumor subtypes. Classification performance was evaluated using F-1 score on the held-out source test samples.
The experiment was repeated 30 times, and each barplot reports the mean F-1 score with the standard error. SpinAdapt either ties
or outperforms Seurat and ComBat in pancreatic, colorectal, breast, and bladder cancer subtypes. For each subtype, significance
testing between methods was performed via two-sided paired McNemar test on the positive samples only. We report the median
P-value across the 30 repetitions of the experimental framework (*P < 0.05, **P < 0.01, ***P < 0.001).

Figure 3. UMAP plots of integrated datasets by cancer type, where the integration is performed using the SpinAdapt algorithm.
Subtype homogeneity is apparent in the majority of dataset integrations regardless of library size. Dataset-wise clustering is
minimal within integrated datasets (compared to pre-integration), enabling joint statistical analysis across corrected source
(cross) and target (circle) datasets.
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Figure 1: SpinAdapt Workflow

Figure 2: Random Forest-Based Classifier Analysis across Four Cancer Types
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Figure 3: UMAP Plot of Dataset Integration across Four Cancer Types
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