# The genomic and transcriptomic landscape of PIK3R1-mutated breast cancers

Melody A. Cobleigh<sup>2\*</sup>, Emmanuel Okeke<sup>1</sup>, Brett Mahon<sup>1</sup>, Elizabeth Mauer<sup>1</sup>, Alex Barrett<sup>1</sup>, Abde M. Abukhdeir<sup>2, 3</sup> <sup>1</sup>Tempus Labs Inc., 600 W Chicago, IL 60654, <sup>2</sup>Rush University Medical Center, 1620 W Harrison St, Chicago, IL 60612, <sup>3</sup>This work began while AMA was a faculty member at Rush University. AMA is currently an employee with the U.S. Food and Drug Administration. The views and data in this publication do not reflect the opinions of The U.S. Food and Drug Administration. \*Email address: melody\_cobleigh@rush.edu

## INTRODUCTION

Somatic mutations in *PIK3R1*, a tumor suppressor gene that encodes the regulatory subunit (p85 $\alpha$ ) of the PI3K signaling complex, are associated with poor outcomes in breast cancer. We previously developed an isogenic cellular system lacking p85 $\alpha$  and investigated therapeutic approaches for breast cancers that lack functional p85 $\alpha$ .<sup>1</sup> For instance, somatic loss of *PIK3R1* may sensitize breast cancer cells to MEK inhibition; previous work in patient-derived xenograft models confirmed this observation.<sup>2</sup> Here, we investigated the significance of *PIK3R1* mutations (*PIK3R1*<sup>MUT</sup>) in breast cancer by using real-world data to characterize the genomic landscape of breast cancer patients with *PIK3R1<sup>MUT</sup>* and examine genes that were co-mutated with *PIK3R1*. We also interrogated the effect of *PIK3R1*<sup>MUT</sup> on corresponding mRNA expression levels, tumor mutational burden (TMB), and microsatellite instability (MSI) to better understand the molecular-level effects of this gene.

#### METHODS

We retrospectively analyzed next-generation sequencing (NGS) data from 3836 HER2 negative (HER2-) and 460 HER2 positive (HER2+) stage I-IV breast cancer patients with confirmed hormone receptor status (HR+/–).

Our cohort consisted of molecularly profiled, de-identified breast cancer cases using the Tempus xT solid tumor assay (DNA-seq of 595-648 genes at 500x coverage and exome capture RNA-seq).<sup>3</sup>

This assay assesses mutations in both germline and somatic tissue and characterizes nucleotide variants, insertions/deletions, and copy number variants.

#### Table 1: Distribution of cohort by HR and HER2 status

| Histology | n    |
|-----------|------|
| HR+/HER2- | 2782 |
| HR-/HER2- | 1054 |
| HR+/HER2+ | 317  |
| HR-/HER2+ | 143  |

<sup>1</sup>Turturro, S.B., et al., Breast Cancer Res Treat 2019; 177:325-33 <sup>2</sup>Cobleigh, MA, et al, Journal of Clinical Oncology 2021 39:15\_suppl, e13062-e13062 <sup>3</sup>Beaubier, N., *et al., Oncotarget* 2019; 10:2384-2396

### RESULTS

| Table 2: <i>PIK</i>                                     | ole 2: PIK3R1 mutation frequency across HR and HER2 subtypes                |                                    |                                     |                                |                               |                                      | PIK3R1 gene expression in PIK3R1 <sup>WT</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                            |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------|-------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                         | PIK                                                                         | <b>(3R1<sup>MUT</sup></b><br>n (%) | <b>PIK3R1</b> <sup>W</sup><br>n (%) | Γ                              | p-value <sup>4</sup>          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a                                                                            | HR+/HER2-                                                                                                                                                                  |  |
| <b>Overall HER</b>                                      | <b>2-</b> I                                                                 | n=87                               | n=3749                              |                                |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | Wilcoxon, p=0.004                                                                                                                                                          |  |
| HR+/HER                                                 | <b>2-</b> 38                                                                | 8 (44%)                            | 2744 (73%                           | 6)                             |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | og1(<br>essi<br>7                                                            | The second se                                                            |  |
| HR-/HER2                                                | <b>2-</b> 49                                                                | 9 (56%)                            | 1005 (27%                           | 6)                             | - < 0.001                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                                                                                                            |  |
| <b>Overall HER</b>                                      | 2+                                                                          | n=5                                | n=455                               |                                |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K3A<br>Pe E                                                                  |                                                                                                                                                                            |  |
| HR+/HER                                                 | <b>2+</b> 2                                                                 | (40%)                              | 315 (69%                            | 6)                             | 0.2                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Der<br>Ger                                                                   |                                                                                                                                                                            |  |
| HR-/HER2                                                | <b>+</b> 3 (60%) 140 (31%) 0.2                                              |                                    |                                     | Z<br>PIK3R1WT PIK3R1MUT        |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                                                                                                            |  |
| <sup>4</sup> Fisher's exac                              | t test                                                                      |                                    |                                     |                                |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                                                                                                            |  |
| Distributio<br>a<br> -                                  | n of <i>PIK3R</i><br>HER2- Over                                             | <b>1 mutatio</b>                   | onal subtyp                         | es across                      | s HER2- sa                    | mples                                | <b>Figure</b><br>rate con<br>test wit<br>express<br>3.27; p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2. a.</b> HR+/<br>crection for<br>h false dis<br>sion was a<br><0.001, q< | HER2-, p=0.004, q=0.024;<br>or multiple testing. <b>b.</b> HR-/<br>scovery rate correction for<br>lso higher in <i>PIK3R1<sup>MUT</sup></i> th<br>0.001; Wilcoxon rank sum |  |
|                                                         |                                                                             |                                    |                                     |                                |                               |                                      | • <i>PIK3R1</i> mutations are more common in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                            |  |
|                                                         |                                                                             |                                    |                                     | Multihit<br>Framochift Variant |                               |                                      | <ul> <li>Mutations in <i>PIK3R1</i> tend toward mutual</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                                                                                                                                                                            |  |
| b                                                       |                                                                             |                                    |                                     | Missense Variant               |                               |                                      | • Mutations in PTEN NE1 and TP53 are en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |                                                                                                                                                                            |  |
|                                                         | HR+/HER                                                                     | <u> </u>                           |                                     | Stop Gaine<br>Disruptive       | ed<br>Inframe Dele            | tion                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                                                                                                            |  |
| C                                                       | HR-/HER2                                                                    | -/HER2-                            |                                     |                                |                               |                                      | <ul> <li>Median find was highler in <i>FixSk1</i> with mutations/MB; p=0.002, Wilcoxon rank single field with the state of the state of</li></ul> |                                                                              |                                                                                                                                                                            |  |
|                                                         |                                                                             |                                    |                                     |                                |                               |                                      | • The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | not statist<br>percentag                                                     | cically significant (0.8% vs.<br>ge of patients with a high to                                                                                                             |  |
| <b>Figi</b><br>vari                                     | athogenic/likely pathogenic <i>PIK3R1</i><br>b), and HR-/HER2- samples (c). |                                    |                                     |                                |                               | c <i>PIK3R1</i><br>(c).              | mutations/Mb) was not significantly diffe<br>disease (7% vs. 6.7%; p>0.9, Pearson's Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                                                                                                            |  |
|                                                         |                                                                             |                                    |                                     |                                |                               |                                      | • PIK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R1 RNA ex                                                                    | pression was higher in PIk                                                                                                                                                 |  |
| Tal<br>sar                                              |                                                                             |                                    | ı PIK                               | (3 <i>R1</i> <sup>MUT</sup> v  | s. <i>PIK3R1</i> <sup>v</sup> | / <sup>T</sup> HER2-                 | CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLUS                                                                         | IONS                                                                                                                                                                       |  |
|                                                         |                                                                             |                                    | WT                                  | p-value <sup>5</sup>           | q-value <sup>6</sup>          |                                      | Our st<br>studie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | udy used<br>s and illu                                                       | d real-world evidence to<br>Istrates the importance                                                                                                                        |  |
|                                                         |                                                                             |                                    |                                     |                                |                               |                                      | Certai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n mutati                                                                     | ons associated with po                                                                                                                                                     |  |
| Docitivoly                                              | PTEN                                                                        | 23 (26%)                           | 206 (6%)                            | <0.001                         | <0.001                        |                                      | resista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nce ( <i>e.g.</i>                                                            | , PTEN and NF1) were m                                                                                                                                                     |  |
| correlated                                              | NF1                                                                         | 13 (15%)                           | 158 (4%)                            | <0.001                         | 0.008                         | PIK2R1 RNIA avaraccion was higher in |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                                                                                                            |  |
|                                                         | TP53                                                                        | 50 (57%)                           | 1455 (39%)                          | <0.001                         | 0.021                         |                                      | sugges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sting tha                                                                    | t tumor cells compensa                                                                                                                                                     |  |
| Negatively<br>correlated                                | РІКЗСА                                                                      | 8 (9%)                             | 1006 (27%)                          | <0.001                         | 0.014                         |                                      | overex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pression                                                                     | n of mutant <i>PIK3R1</i> RNA                                                                                                                                              |  |
| <sup>5</sup> Pearson's Ch<br><sup>6</sup> False discove | ni-squared te                                                               | est; Fisher's                      | s exact test<br>multiple testin     | σ                              |                               |                                      | Overa<br>breast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l, this stu<br>cancer.                                                       | udy shows that <i>PIK3R1</i>                                                                                                                                               |  |



discovery rate correction for mattiple testing

# ACKNOWLEDGEMENTS

and Sherman Fairchild Foundations for their support.

#### vs. *PIK3R1*<sup>MUT</sup> HER2- disease



Wilcoxon rank sum test with false discovery /HER2-, p<0.001, q <0.001; Wilcoxon rank sum multiple testing. Median *PIK3R1* log10 gene nan in *PIK3R1*<sup>WT</sup> HER2- disease overall (3.45 vs. test with false discovery rate correction).

HR- than HR+ disease.

exclusivity with *PIK3CA* in HER2- disease.

nriched in *PIK3R1<sup>MUT</sup>* HER2- disease.

an in *PIK3R1*<sup>WT</sup> HR+/HER2- disease (4.7 vs. 3.1 sum test). Median TMB was not significantly <sup>WT</sup> HR-/HER2- disease (3.57 vs. 3.07; p=0.3,

*K3R1*<sup>WT</sup> HER2- samples, although this difference 0%; p>0.9, Fisher's exact test).

umor mutational burden (TMB; ≥10 erent between *PIK3R1*<sup>MUT</sup> and *PIK3R1*<sup>WT</sup> HER2hi-squared test).

K3R1<sup>MUT</sup> than in *PIK3R1*<sup>WT</sup> HER2- disease.

o build on previous pre-clinical and clinical e of *PIK3R1<sup>MUT</sup>* in breast cancer.

por outcomes and endocrine therapy nore frequent in *PIK3R1<sup>MUT</sup>* tumor samples.

*PIK3R1*<sup>MUT</sup> than in *PIK3R1*<sup>WT</sup> HER2- disease, ate for a loss of *PIK3R1* protein function via

may be an important therapeutic target in