A platform of CDK4/6 inhibitor-resistant patient-derived breast cancer organoids illuminates mechanisms of resistance and therapeutic vulnerabilities

Ariella B. Hanker1,2, Sumanta Chatterjee1, Yunguan Wang1, Dan Ye1, Emmanuel Bikorimana1, Dhiyya R. Sudhir1, Brian M. Larsen2, Lauren C. Smith2, Yinli Zhang2, Vishal Kandagata1, Kuntal Majmudar1,4, Ezzeqiu Renzulli1, Saurabh Mendiratta1, Kimberly Blackwell1, Alana L. Welm2, Sunati Sahoo2, Nisha Unni2,3, Cheryl Lewis1,4, Tao Wang2, Ameen A. Salahudeen2, Carlos L. Arteaga1,2

1UT Southwestern Simmons Comprehensive Cancer Center, 2Department of Internal Medicine, 3Department of Population and Data Sciences, 4Department of Pathology, UT Southwestern Medical Center, Dallas, TX.

We thank the patients who consented to allow their tissue to be used for research. We acknowledge the support from the UT Southwestern Pancreatic Cancer Research Network, whose research is supported by Breast Cancer Research Foundation BCRF-07-031, P20 grants (NCI CA166727 and CA166728), Cancer Prevention Fellowship (CA193165), Susan G. Komen Breast Cancer Foundation SAB1000779, and the GI SPORE Center Cancer Center Support Grant (CA125184).

This presentation is the intellectual property of the author/presenter. Contact ariella.hanker@utsouthwestern.edu for permission to reprint and/or distribute.

Introduction

- CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) + antihormones have revolutionized the treatment of metastatic ER+ breast cancer.
- However, tumors eventually acquire resistance. Patients with resistant cancers are left with limited treatment options.
- Mechanisms of CDK4/6 resistance are quite heterogeneous. Potential resistance-conferring alterations include: RB1, FATT, PTEN, ARID1A, FGFR1/2, ERBB2, CCNE1/2, AURKA, and KRAS.
- Models of CDK4/6 resistance are needed to capture the heterogeneity of resistance mechanisms and identify novel therapeutic strategies for CDK4/6-resistant tumors.
- Patient-derived organoids (PDOs) provide a rapid, robust, and reliable platform that recapitulates intra-tumor heterogeneity, partially mimics the cancer microenvironment, and accurately predicts drug responses.

Objective: To generate and characterize a platform of CDK4/6-resistant breast cancer PDOs to serve as models for understanding acquired resistance to CDK4/6 + antihormones and identifying therapies to overcome resistance.

PDOs established from metastatic biopsies of ER+ breast cancer patients progressing on CDK4/6 + antihormones

A subset of CDK4/6-resistant PDOs retain sensitivity to PI3K pathway and/or G2/M inhibitors

Conclusion

- PDOs can be successfully established and cultured long-term from metastatic ER+ breast cancer biopsies.
- PDOs from patients progressing on CDK4/6 inhibit retain resistance in culture.
- Mutations in PDOs are concordant with clinical reports from biopsies and recapitulate alterations that have previously been associated with resistance to CDK4/6 and/or antihormones.
- CDK4/6-resistant PDOs fail to suppress proliferation to second-generation PI3K inhibitors.
- CDK4/6-resistant organoids are vulnerable to inhibitors of cell cycle proteins and/or PI3K/AKT pathway inhibitors.
- CDK4/6-resistant PDOs represent a valuable model to understand and explore diverse mechanisms of drug resistance and therapeutic vulnerabilities.