A platform of CDK4/6 inhibitor-resistant patient-derived breast cancer organoids illuminates mechanisms of resistance and therapeutic vulnerabilities

UTSouthwestern

Comprehensive Cancer Center

Harold C. Simmons

Ariella B. Hanker^{1,2}, Sumanta Chatterjee¹, Yunguan Wang³, Dan Ye¹, Emmanuel Bikorimana¹, Dhivya R. Sudhan¹, Brian M. Larsen⁵, Lauren C. Smith⁵, Yilin Zhang⁵, Vishal Kandagatla¹, Kuntal Majmudar^{1,4}, Ezequiel Renzulli⁵, Saurabh Mendiratta¹, Kimberly Blackwell⁵, Alana L. Welm⁶, Sunati Sahoo⁴, Nisha Unni^{1,2}, Cheryl Lewis^{1,4}, Tao Wang³, Ameen A. Salahudeen⁵, Carlos L. Arteaga^{1,2} ¹UT Southwestern Simmons Comprehensive Cancer Center, ²Department of Internal Medicine, ³Department of Population and Data Sciences, ⁴Department of Pathology, UT Southwestern Medical Center, Dallas TX; ⁵TEMPUS, Chicago IL; ⁶Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City UT

Introduction

• CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) + antiestrogens have revolutionized the treatment of metastatic ER+ breast cancer.

• However, tumors eventually acquire resistance. Patients with resistant cancers are left with limited treatment options.

• Mechanisms of resistance to CDK4/6i are quite heterogeneous. Potential resistance-conferring alterations include: RB1, FAT1, PTEN, ARID1A, FGFR1/2, ERBB2, CCNE1/2, AURKA, and KRAS.

• Models of CDK4/6i resistance are needed to capture the heterogeneity of resistance mechanisms and identify novel therapeutic strategies for CDK4/6iresistant tumors

• Patient-derived organoids (PDOs) provide a rapid, robust and reliable platform that recapitulates intra-tumor heterogeneity, partially mimics the cancer microenvironment, and accurately predicts drug response.

Objective: To generate and characterize a platform of CDK4/6i-resistant breast cancer PDOs to serve as models for understanding acquired resistance to CDK4/6i + antiestrogens and identifying therapies to overcome resistance.

Successful PDOs (n=15) Unsuccessful PDOs (n=17)

Figure 1. (A) Fresh surgical samples (treatment-naïve) or metastatic biopsies (postprogression on CDK4/6i) from ER+ breast cancers were digested and plated in Matrigel White (not Hispanic) domes in defined organoid media. (B) Out of Black/African American 31 metastatic biopsies from cancers that progressed on CDK4/6i, 15 PDOs were successfully established and passaged >4 times. (C) Biopsy sites from which PDOs were (D) Histological subtypes generated. represented in the CDK4/6i-resistant PDO collection. (E) Racial/ethnic background of established and unsuccessful PDOs.

Not specified (n=1

CDK4/6i-Resistant Organoids

D

Breast carcinoma with lobular features (n=1)

Inflammatory (n=1)

Α	
PIK3CA	79
TP53	50
CDH1	29
NF1	21
MAP3K1	21
FANCA	14
ARID1A	14
PIK3R1	7%
PTEN	7%
ATR	7%
ARID1B	7%
ERBB3	7%

Figure 3. (A) DNA was extracted from CDK4/6i-sensitive and –resistant PDOs and subjected to targeted DNA-seq using the TEMPUS targeted capture NGS panel (684 cancer genes) and compared to the clinical NGS reports from matched biopsies. Putative cancer driver mutations (OncoKB) were analyzed using cBioportal.org. PDOs #33681 and #33682 were derived from the same patient. A clinical NGS report was not available for samples #36062, #36771, and #36441. (B) RNA-seq data from untreated CDK4/6i-sensitive and resistant PDOs was analyzed using single sample gene set enrichment analysis (GSEA) of 125 breast cancer-related signatures. Asterisks represent mutations of that gene in those organoids; "A" represents amplification. For example, the HER2-amp signature was highly upregulated in organoid #37189, which harbors HER2 amplification. (C) Clinical NGS reports were available for 12 matched patient biopsies for successful resistant PDOs. Frequency of alterations that have been associated with CDK4/6i or antiestrogen resistance is shown. DNA-seq analysis in PDOs is ongoing.

10¹ 10² 10³ 10⁴

[MK-5108] (nM)

10⁰

DNA Da

10⁰ 10¹ 10² 10³ 10⁴ [Rigosertib] (nM)

Figure 4. (A) Seven CDK4/6i-resistant PDOs were screened in 384-well plates with 56 inhibitors (each at 10, 100, 1,000, or 10,000 nM) using a fluorescent microscopy-based 3D drug screening assay (TEMPUS). PDOs were treated for 6 days. Organoid cell viability relative to DMSO-treated control wells is shown. Putative driver genomic alterations in each PDO are shown above. PI3K pathway alterations are

shown in red. Other alterations associated with CDK4/6i resistance are shown in purple. Asterisk indicates that only the clinical NGS report from the biopsy was available; DNA-seq of PDOs #39149, #39612, and #40303 is in progress. (B) Dose-response curves of the organoid screen in (A) are shown.

CCNE1-amplified PDO is sensitive

Figure 5. CDK4/6i-resistant PDOs (n=10) were treated with the indicated concentrations of the CDK2/4/6 inhibitor PF06873600 for six days. Cell viability of was measured using the 3D CellTiter-Glo reagent and normalized to untreated controls. Data points represent the mean of four replicates. IC50 values are shown in parentheses. PDO #37419 harbors a CCNE1 (Cyclin E1) amplification.

Conclusions

- > PDOs can be successfully established and cultured long-term from metastatic ER+ breast cancer biopsies.
- > PDOs from patients progressing on CDK4/6i retain resistance in culture.
- > Mutations in PDOs are concordant with clinical reports from biopsies and recapitulate alterations that have previously been associated with resistance to CDK4/6i and/or antiestrogens.
- \succ CDK4/6i-resistant PDOs fail to suppress the E2F gene signature in palbociclib-treated organoids.
- \succ CDK4/6i-resistant organoids are vulnerable to inhibitors of other cell cycle proteins and/or PI3K/AKT pathway inhibitors.
- \succ CDK4/6i-resistant PDOs represent a valuable model to understand and explore diverse mechanisms of drug resistance and therapeutic vulnerabilities.

Acknowledgements

We thank the patients who consented to allow their tissue to be used for research. We acknowledge the assistance of the UTSW Tissue Management Shared Resource. This work was supported by Breast Cancer Research Foundation BCRF-DRC-20-001, CPRIT RR170061, NCI Breast SPORE P50 CA098131, UTSW Simmons Cancer Center P30 CA142543, Susan G. Komen Breast Cancer Foundation SAB1800010, NCI R01CA224899, and a research grant from Pfizer.

This presentation is the intellectual property of the author/presenter. Contact ariella.hanker@UTsouthwestern.edu for permission to reprint and/or distribute.

@AriellaHanker @UTSWcancer

)	to	CDK2/4/6 inhibitor
		<u>Organoid (IC50)</u> 26062 (>10 µM)
		30002 (> 10 um)
		37189 (>10 ulvi)
	-	33682 (6.9 uM)
		35733 (2.2 uM)
	-	37419 (0.13 uM) CCNE1 Amp
	-0-	39149 (>10 uM)
	+	38111 (7.1 uM)
	~~	40303 (3.1 uM)
	-0-	36060 (>10 uM)
	-8-	39612 (3.6 uM)