Loss of ASXL1 tumor suppressor promotes resistance to CDK4/6 inhibitors in ER+ breast cancer

Dhivya R. Sudhan¹, Sumanta Chatterjee¹, Jiwoong Kim², Yunguan Wang², Vishal Kandagatla¹, Dan Ye¹, Chang-Ching Lin¹, Jorge Gomez Tejeda Zanudo³, Esha Jain³, Arnaldo Marin¹, Alberto Servetto¹, Kyung-min Lee¹, Juan Manuel Povedano⁴, David McFadden⁴, Alex Barrett⁵, Nikhil Wagle³, Ariella B. Hanker¹, Carlos L. Arteaga¹

¹UT Southwestern Simmons Comprehensive Cancer Center, ²Department of Population and Data Sciences, ⁴Department of Biochemistry, UT Southwestern Medical Center, Dallas TX; ³Dana Farber Cancer Institute; Boston MA; ⁵TEMPUS, Chicago IL.
Disclosure statement

• AstraZeneca employee since October 2021

• All data were generated during my tenure at the Simmons Comprehensive Cancer Center, in the laboratory of Dr. Carlos Arteaga
Novel approaches to unravel the CDK4/6 inhibitor resistance landscape

Genomic profiling of MBCs progressing on CDK4/6i has identified several resistance-associated somatic alterations, albeit at low frequencies –

- **RB1** mutations (6/127; **4.7%**) (O'Leary et al, Cancer Discovery, 2018)
- **FGFR1** amplification (Formisano et al, Nature Communications, 2019)
- **FAT1** loss-of-function alterations (6/348; **1.7%**) (Li et al, Cancer Cell, 2018)
- **FGFR2** (3/41), **AKT1** (5/41), **AURKA** (11/41), **KRAS** (2/41), and **HRAS** (1/41) alterations (Wander et al, Cancer Discovery, 2020)

There is an unmet need to uncover the full spectrum of genomic drivers of resistance to CDK4/6 inhibitors

Accelerated mutagenesis approaches provide a robust and unbiased platform for the discovery of novel resistance mechanisms
Accelerated mutagenesis screen to discover a spectrum of novel mutations causally associated with resistance to CDK4/6 blockade

Impaired DNA repair accelerates the rate of nucleotide substitution leading to rapid accumulation of new mutations

Palbo Abema
Accelerated mutagenesis screen to discover a spectrum of novel mutations causally associated with resistance to CDK4/6 blockade

Number of missense and frameshift mutations accumulated by the MSH2^{-/-} clones are higher compared to the parental cells.

Majority of alterations noted in these 10 candidate genes were frameshift or truncating mutations, suggesting loss of function.

*cross-resistant to fulvestrant
Top hits are associated with clinical resistance to CDK4/6 inhibitors

DFCI CCPM / MBC Project

<table>
<thead>
<tr>
<th>Hugo Symbol</th>
<th>Protein Change</th>
<th>Drug</th>
<th>Resistance Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASXL1</td>
<td>p.RGGE65fs</td>
<td>Palbociclib</td>
<td>Acquired</td>
</tr>
<tr>
<td>ASXL1</td>
<td>p.E484K</td>
<td>Palbociclib</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>ASXL1</td>
<td>p.E824Q</td>
<td>Palbociclib</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>ASXL1</td>
<td>p.G949D</td>
<td>Palbociclib</td>
<td>Putative intrinsic</td>
</tr>
<tr>
<td>ASXL1</td>
<td>p.E513*</td>
<td>Ribociclib</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>ASXL1</td>
<td>p.R235Q</td>
<td>Palbociclib</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>ASXL1</td>
<td>p.R549C</td>
<td>Palbociclib</td>
<td>Acquired</td>
</tr>
<tr>
<td>ATR</td>
<td>p.M2551I</td>
<td>Palbociclib</td>
<td>Putative intrinsic</td>
</tr>
<tr>
<td>ATR</td>
<td>p.K899T</td>
<td>Palbociclib</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>ATR</td>
<td>p.E2405Q</td>
<td>Abemaciclib</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>MIS18BP1</td>
<td>p.K845N</td>
<td>Palbociclib</td>
<td>Putative intrinsic</td>
</tr>
</tbody>
</table>

TEMPUS

<table>
<thead>
<tr>
<th>Hugo Symbol</th>
<th>Incidence</th>
<th>Alteration Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASXL1</td>
<td>37/1796</td>
<td>2.06%</td>
</tr>
<tr>
<td>ATR</td>
<td>49/1796</td>
<td>2.72%</td>
</tr>
<tr>
<td>MIS18BP1</td>
<td>3/1796</td>
<td>0.17%</td>
</tr>
</tbody>
</table>
Heterozygous truncating mutations in the ASXL1 gene is a common event in myeloid malignancies.

ASXL1 inactivation induces epigenetic and transcriptional reprogramming through global loss of H3K27me3 chromatin repressive marks.

Abdel-Wahab et al. Cancer Cell, 2012
ASXL1 deficient ER+ breast cancer cells are resistant to CDK4/6 inhibition
ASXL1 deficiency leads to robust induction of E2F target genes

- E2F targets
- G2M checkpoint
- Myc targets
- Mitotic spindle
- WNT β-catenin signaling
- Hedgehog signaling
- Spermatogenesis
- EMT
- Hypoxia
- UV response
- mTORC1 signaling
- Apoptosis
- Glycolysis
- Complement response
- TNFα signaling via NFκB
- Cholesterol homeostasis
- Xenobiotic metabolism
- Bile acid metabolism
- p53 pathway
- INFγ response
- Oxidative phosphorylation
- Adipogenesis
- Protein secretion
- Estrogen response late
- Estrogen response early

shASXL1 vs. control - palbociclib

Normalized enrichment score (NES)
Loss of function ASXL1 mutations are acquired in CDK4/6 inhibitor resistant ER+ MBCs

ASXL1 loss gene signature queried in clinical datasets
ASXL1 deficiency leads to robust induction of cell cycle genes

Palbociclib (P); Ribociclib (R); Abemaciclib (A)

- P R A - P R A - P R A

pRB (780)
pRB (807) short exp
pRB (807) long exp
CDK4
CDK6
CDK2
Cyclin D1
Cyclin E1
Cyclin E2
Cyclin A2
Cyclin B1
p16
p21
p27
GAPDH

shRNA:
ctrl ASXL1#1 ASXL1#2

Palbociclib

shCTRL shASXL1#1 shASXL1#2

CDK2 #1
CDK2 #2
CDK6 #1
CDK6 #2
CCNE1 #1
CCNE1 #2
cyclin A2 #1
cyclin A2 #2
CDK1 #1
CDK1 #2
cyclin E1 #1
cyclin E1 #2
cyclin A2 #1
cyclin A2 #2

This presentation is the intellectual property of Dhivya Sudhan. Contact her at Dhivya.Sudhan@UTSouthwestern.edu for permission to reprint and/or distribute.
ASXL1 deficient cells are sensitive to CDK1/CCNA2 targeting

RO3306 (CDK1 inhibitor)

CDK2 inhibitor: K03861
CDK1 inhibitor: RO3306
Summary

Accelerated mutagenesis screening platform discovered a spectrum of novel mutations associated with resistance to CDK4/6 blockade

ASXL1 deficiency leads to robust induction of several cell cycle genes thus bypassing G1 arrest induced by cell cycle inhibitors

Knockdown of cyclin A or CDK1, but not CDK2, completely inhibited growth of ASXL1 deficient cells

CDK1 may present a clinically actionable vulnerability of ASXL1-deficient, CDK4/6i resistant cells
Acknowledgements

Arteaga Laboratory
Carlos Arteaga, MD (Mentor)
Sumanta Chatterjee, PhD
Ariella Hanker, PhD
Vishal Kandagatla, MS
Dan Ye, MD
Albert Lin, PhD
Alberto Servetto, MD, PhD
Arnaldo Marin, MD
Kyung-min Lee, PhD
Hiroaki Akamatsu, MD
Gun Min Kim, MD
Saurabh Mendiratta, MS
Fabiana Napolitano, MD

Dana Farber Cancer Institute
Nikhil Wagle, MD
Jorge Gomez Tejeda Zanudo, PhD
Esha Jain, PhD

TEMPUS
Alex Barrett, PhD

UTSW
Juan Manuel Povedano, PhD
David McFadden, MD, PhD

Funding
NCI Breast Cancer SPORE
Breast Cancer Research Foundation
CPRIT
Susan G. Komen Breast Cancer Foundation

Simmons Cancer Center Data Science Shared Resource
Jiwoong Kim, PhD
Yunguan Wang, PhD