

Loss of ASXL1 tumor suppressor promotes resistance to CDK4/6 inhibitors in ER+ breast cancer

Dhivya R. Sudhan¹, Sumanta Chatterjee¹, Jiwoong Kim², Yunguan Wang², Vishal Kandagatla¹, Dan Ye¹, Chang-Ching Lin¹, Jorge Gomez Tejeda Zanudo³, Esha Jain³, Arnaldo Marin¹, Alberto Servetto¹, Kyung-min Lee¹, Juan Manuel Povedano⁴, David McFadden⁴, Alex Barrett⁵, Nikhil Wagle³, Ariella B. Hanker¹, Carlos L. Arteaga¹

¹UT Southwestern Simmons Comprehensive Cancer Center, ²Department of Population and Data Sciences, ⁴Department of Biochemistry, UT Southwestern Medical Center, Dallas TX; ³Dana Farber Cancer Institute; Boston MA; ⁵TEMPUS, Chicago IL.

Disclosure statement

- AstraZeneca employee since October 2021
- All data were generated during my tenure at the Simmons Comprehensive Cancer Center, in the laboratory of Dr. Carlos Arteaga

Novel approaches to unravel the CDK4/6 inhibitor resistance landscape

Genomic profiling of MBCs progressing on CDK4/6i has identified several resistanceassociated somatic alterations, albeit at low frequencies –

- *RB1* mutations (6/127; **4.7%**) (O'Leary et al, Cancer Discovery, 2018)
- FGFR1 amplification (Formisano et al, Nature Communications, 2019)
- *FAT1* loss-of-function alterations (6/348; **1.7%**) (Li et al, Cancer Cell, 2018)
- FGFR2 (3/41), AKT1 (5/41), AURKA (11/41), KRAS (2/41), and HRAS (1/41) alterations (Wander et al, Cancer Discovery, 2020)

There is an unmet need to uncover the full spectrum of genomic drivers of resistance to CDK4/6 inhibitors

Accelerated mutagenesis approaches provide a robust and unbiased platform for the discovery of novel resistance mechanisms

Accelerated mutagenesis screen to discover a spectrum of novel mutations causally associated with resistance to CDK4/6 blockade

Impaired DNA repair accelerates the rate of nucleotide substitution leading to rapid accumulation of new mutations

Accelerated mutagenesis screen to discover a spectrum of novel mutations causally associated with resistance to CDK4/6 blockade

Number of missense and frameshift mutations accumulated by the MSH2^{-/-} clones are higher compared to the parental cells

Majority of alterations noted in these 10 candidate genes were frameshift or truncating mutations, suggesting loss of function.

Top hits are associated with clinical resistance to CDK4/6 inhibitors

DFCI CCPM / MBC Project

Hugo Symbol	Protein Change	Drug	Resistance Category
ASXL1	p.RGGE65fs	Palbociclib	Acquired
ASXL1	p.E484K	Palbociclib	Intrinsic
ASXL1	p.E824Q	Palbociclib	Intrinsic
ASXL1	p.G949D	Palbociclib	Putative intrinsic
ASXL1	p.E513*	Ribociclib	Intrinsic
ASXL1	p.R235Q	Palbociclib	Intrinsic
ASXL1	p.R549C	Palbociclib	Acquired
ATR	p.M2551I	Palbociclib	Putative intrinsic
ATR	p.K899T	Palbociclib	Intrinsic
ATR	p.E2405Q	Abemaciclib	Intrinsic
MIS18BP1	p.K845N	Palbociclib	Putative intrinsic

Hugo Symbol	Incidence	Alteration Frequency
ASXL1	37/1796	2.06%
ATR	49/1796	2.72%
MIS18BP1	3/1796	0.17%

Additional Sex Combs Like Transcriptional Regulator 1 (ASXL1)

Heterozygous truncating mutations in the ASXL1 gene is a common event in myeloid malignancies

ASXL1 inactivation induces epigenetic and transcriptional reprogramming through global loss of H3K27me3 chromatin repressive marks.

ASXL1 deficient ER+ breast cancer cells are resistant to CDK4/6 inhibition

This presentation is the intellectual property of Dhivya Sudhan. Contact her at Dhivya.Sudhan@UTSouthwestern.edu for permission to reprint and/or distribute.

ASXL1 deficiency leads to robust induction of E2F target genes

Loss of function ASXL1 mutations are acquired in CDK4/6 inhibitor resistant **ER+ MBCs**

ASXL1 loss gene signature queried in clinical datasets

MBC Project RNAseq dataset

CCPM RNAseq dataset 1.5+ Tumors from Pts w/o ASXL1 muts mut ASXL1_KD_DN 1.2 Tumors from Pts ASXL1 muts ASXL1_muts ASXL1_pt_has_ w/o ASXL1 muts and 0297 T1 low ASXL1 expression ASXL1 p.E513* ASXL1 p.RGGE65fs 0.9 ASXL1_p.E923* 359 No ASXL1 muts T.1 359 No ASXL1 muts No WES NES 0297 T2 0.6 398! T1 398 0.3 2.0 0.5 1.0 1.5 Pre Post-progression NES ASXL1 KD DN

ASXL1 deficiency leads to robust induction of cell cycle genes

ASXL1 deficient cells are sensitive to CDK1/CCNA2 targeting

Summary

Accelerated mutagenesis screening platform discovered a spectrum of novel mutations associated with resistance to CDK4/6 blockade

ASXL1 deficiency leads to robust induction of several cell cycle genes thus bypassing G1 arrest induced by cell cycle inhibitors

Knockdown of cyclin A or CDK1, but not CDK2, completely inhibited growth of ASXL1 deficient cells

CDK1 may present a clinically actionable vulnerability of ASXL1-deficient, CDK4/6i resistant cells

Acknowledgements

Arteaga Laboratory

Carlos Arteaga, MD (Mentor) Sumanta Chatterjee, PhD Ariella Hanker, PhD Vishal Kandagatla, MS Dan Ye, MD Albert Lin, PhD Alberto Servetto, MD, PhD Arnaldo Marin, MD Kyung-min Lee, PhD Hiroaki Akamatsu, MD Gun Min Kim, MD Saurabh Mendiratta, MS Fabiana Napolitano, MD

Simmons Cancer Center Data Science Shared Resource Jiwoong Kim, PhD Yunguan Wang, PhD

Dana Farber Cancer Institute

Nikhil Wagle, MD Jorge Gomez Tejeda Zanudo, PhD Esha Jain, PhD

TEMPUS Alex Barrett, PhD

UTSW

Juan Manuel Povedano, PhD David McFadden, MD, PhD

Funding

NCI Breast Cancer SPORE Breast Cancer Research Foundation CPRIT Susan G. Komen Breast Cancer Foundation

