Actionable genomic landscapes from a real-world cohort of localized urothelial carcinoma patients

Thomas Gerald¹, Vitaly Margulis¹, Xiaosong Meng¹, Suzanne Cole², Qian Qin², S. Greg Call³, Elizabeth Mauer³, Yair Lotan¹, and Solomon L Woldu¹

¹Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA *II* ²Division of Hematology Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA // ³Tempus Labs, Inc., Chicago, IL, USA // Correspondence: Solomon.Woldu@utsouthwestern.edu

INTRODUCTION

Recent targeted therapies for advanced and metastatic urothelial cancer have generated enthusiasm, but the actionable genomic landscape of early-stage disease remains largely unknown. Here, we used real-world evidence to investigate differences between somatic and germline mutations in localized, early-stage and advanced urothelial cancers.

METHODS

We retrospectively analyzed de-identified nextgeneration sequencing (NGS) data from 1,146 bladder cancer patients (stages I-IV) with formalinfixed, paraffin-embedded tumor biopsies sequenced using the Tempus xT solid tumor assay (DNA-seq of 595-648 genes at 500x coverage; whole-exome capture RNA-seq). For the subset of patients with tumor-normal match sequencing (n=758), additional incidental germline alterations in 46 different genes were assessed.

	Stages I-II,	Stage III,	Stage IV,
Characteristic	N = 124	N = 159	N = 863
Age at Diagnosis Median (IQR)	73 (63, 79)	72 (63, 77)	68 (61, 75)
Unknown	22	38	256
Gender			
Male	96 (77%)	118 (74%)	633 (73%)
Female	28 (23%)	41 (26%)	230 (27%)
Race			
White	66 (81%)	87 (84%)	443 (89%)
Black or African American	9 (11%)	5 (4.9%)	31 (6.2%)
Asian	1 (1.2%)	6 (5.8%)	12 (2.4%)
Other Race	5 (6.2%)	5 (4.9%)	13 (2.6%)
Unknown	43	56	364
Ethnicity			
Not Hispanic or Latino	39 (95%)	37 (90%)	189 (88%)
Hispanic or Latino	2 (4.9%)	4 (9.8%)	25 (12%)
Unknown	83	118	649

Cohort Demographics

Table 1. Observed differences across gender, race, and ethnicity according to stage were not significant (p>0.05, Pearson's Chi-squared test). Age distribution differed significantly across stage (p=0.006, Kruskal-Wallis rank sum test).

ACKNOWLEDGMENTS

We acknowledge support from the Tempus Discovery Program and thank Adam Hockenberry and other members of the Tempus Scientific Communications team for feedback and review.

RESULTS

Figure 1. We analyzed tumor mutational burden (TMB), microsatellite instability status (MSI), and PD-L1 immunohistochemical staining according to stage. TMB high (TMB-H) is defined as ≥10 mutations per megabase (muts/MB), while TMB low (TMB-L) is defined as <10 muts/MB. MSI status was assessed using probes across 43 microsatellites regions. We did not observe significant differences in either TMB status, MSI status, or PD-L1 positivity according to stage (all cases, p>0.05). Note that 29-42% of patients across stages did not have PD-L1 results, which influenced the overall rate of positivity.

CONCLUSIONS

- clinical disease stage.
- sequencing in cancer subtypes that currently lack hereditary testing guidelines.

Figure 3. In a subset of 758 patients with tumor/normal matched sequencing (stages I-II: 84, III: 105, and IV: 569), we identified a low rate of incidental germline mutations in MUTYH (III, 1%; IV, 1.9%), BRCA2 (I-II, 1.2%; III, 1%; IV, 0.5%), BRIP1 (I-II, 1.2%), ATM (III, 1%; IV, 0.7%), MSH6 (III, 1%; IV, 0.2%), and TP53 (III, 1%; IV, 0.2%) among others. We did not observe significant differences in germlines alterations according to stage (all cases, p>0.05). Overall, incidental germline alterations were detected in 5% of bladder cancer patients regardless of stage.

Patients with bladder cancer have similar rates of potentially actionable mutations and genomic landscapes regardless of

Incidental germline alterations were detected in 5% of bladder cancer patients, highlighting the benefit of tumor/normal matched

These findings provide rationale for further investigating targeted therapies among early-stage bladder cancer patients.

UTSouthwestern Medical Center

"TEMPUS

