Real-World Clinical Genomic Analysis of Patients with BRAF Mutated Cancers Identifies BRAF Class II and III as a Population of Unmet Medical Need

Paul Severson¹, Wendy Kellner², Aleksandra Franovic¹, Nichol Miller¹, Eric Murphy³, Eric Martin³, Richard Williams¹ ¹ Kinnate Biopharma Inc., San Diego, CA, ² Tempus Labs Inc., Chicago, IL, ³ Former Employee of Kinnate Biopharma Inc.

BACKGROUND

Three classes of BRAF mutation:

- Class I kinase active signaling of BRAF mutant monomers
- Class II kinase active signaling of BRAF mutant homodimers
- **Class III** kinase impaired BRAF that signals through RAS-dependent, BRAF mutant / RAF wild-type heterodimers

> There are no targeted therapies approved for patients with BRAF Class II or Class III mutations. KIN-2787 is a clinical stage small molecule, pan-RAF inhibitor designed to inhibit all classes of BRAF mutation.

Class	BRAF Mutations
Class I	V600 ^{E/K/D/G/R}
Class II	Q257 ^R , G464 ^{V/E/R/A} , G469 ^{A/R/V} , V471 ^F , L485 ^F , K499 ^E , L505 ^H , L597 ^{R/V/Q/S} , V600_K601delinsE, E586 ^K , N486_P490del, T599 ^{I/R} , V600_K601delinsEE, V600_K601delinsEQ, P490_Q494del, K601 ^{E/N/T} , fusions
Class III	N581 ^{I/Y/S/T} , G466 ^{V/E/A/R} , K483 ^E , F595 ^L , D594 ^{N/E/G/H} , G469 ^E , G596 ^{R/C/D/V} , S467 ^L

METHODS

De-identified data was utilized from the Tempus database containing 55,000+ solid tumor patients with tumor tissue profiling via the Tempus xT assay (648-gene DNA-seq panel and paired RNA-seq).

Clinical data was available for a subset of patients. Pancancer analysis of BRAF Class I, II, & III explored:

- Prevalence, Cancer Stage, Treatment Landscape
- Co-occurrence with RAS, NF1, PD-L1 gene expression (via RNA-seq), Tumor mutation burden (TMB), and Microsatellite instability (MSI)
- Real-world Treatment Outcomes
 - Time to Treatment Discontinuation (TTD)
 - All patients with BRAF Class I, II, III and with derived TTD were included in the TTD analyses regardless of BRAF detection date

Prevalence

- Out of more than 55,000 solid tumor patients, ~1,160 patients had BRAF Class II or III mutations
- Cancer types with abundant BRAF Class II or III mutations included: NSCLC, CRC, Melanoma, Prostate

BRAF Class	# of Patients	% of Pati Teste
Class II	702	1.3
Class III	459	0.8
Class II or III	1,161	2.1

Cancer Stage

Similar distribution of stages across **BRAF** classes

- ~70% stage IV
- ~90% stage III IV

Co-occurring MAPK Mutations

More common in BRAF Class II & III than Class I

RESULTS

1st Line Treatment Landscape

In patients with BRAF Class II or III:

- Chemo and/or immune checkpoint inhibitors was most common
- Use of targeted therapy was rare

PD-L1 Gene Expression across BRAF Classes BRAF Class I CRC have a trend toward higher PD-L1

Tumor Mutation Burden & Microsatellite Instability Colorectal

- BRAF Class I has two subgroups: • MSI high and TMB high MSI stable and TMB moderate

Melanoma

- MSI generally stable across classes • Median TMB increases with BRAF Class • Trend: Class I < Class II < Class III

NSCLC

- MSI generally stable across classes Median TMB increases with BRAF Class • Trend: Class I < Class II < Class III

NSCLC Real-world Outcomes: Time to Treatment Discontinuation

- **Class III** mutations.

• NSCLC Patients with BRAF Class II or III discontinued 1st line treatments sooner than patients with Class I. The same trend was observed with second line treatments.

• A shorter TTD suggests that patients with BRAF Class II and Class III experienced less benefit and/or less tolerability with the therapies used in these cohorts.

NSCLC 1st Line TTD across BRAF Classes

NSCLC 2nd Line TTD across BRAF Classes

SUMMARY

> Real-world clinical genomic analysis identified ~1,160 solid tumor patients with BRAF Class II or

> BRAF Class II and Class III mutations are associated with distinct tumor characteristics from Class I such as more frequent concurrent RAS and NF1 mutations (melanoma, NSCLC), higher TMB (melanoma, NSCLC), and inferior real-world outcomes (NSCLC).

> This analysis suggests that solid tumor patients with BRAF Class II or Class III mutations represent a substantial population with an unmet need for safe and effective therapies.

A clinical trial of the pan-RAF inhibitor KIN-2787 is open and enrolling adult solid tumor patients with BRAF Class I, II, III mutations and NRAS mutant melanoma (NCT04913285).