Genomic and transcriptomic comparison between breast cancer patients of African and European ancestries demonstrates potential for biomarker-informed therapies

Minoru Miyashita¹, Joshua S. K. Bell², Ezgi Karaesmen², Brooke Rhead², Stephane Wenric², Kristiyana Kaneva², Francisco M. De La Vega², Yonglan Zheng¹, Toshio Yoshimatsu¹, Galina Khramtsova¹, Elisabeth Sveen¹, Fang Liu¹, Fangyuan Zhao¹, Frederick Howard¹, Nora T. Jaskowiak¹, Rita Nanda¹, Dezheng Huo¹, Olufunmilayo I. Olopade¹ ¹University of Chicago, Chicago, IL // ²Tempus Labs, Inc., Chicago, IL // **Correspondence:** Funmi.Olopade@gmail.com

INTRODUCTION

Therapies for breast cancer (BC) are informed by tumor subtypes and molecular heterogeneity. While patients of African ancestry (AA) exhibit a high mortality rate compared with patients of European ancestry (EA), the biological underpinnings of this disparity are not entirely understood.

Here, we present a genomic and transcriptomic comparison between BC tumors from AA and EA patients stratified by BC subtype and clinical stage in a real-world cohort.

METHODS

- De-identified records from AA (n=623) and EA (n=2810) patients with BC were selected from the Tempus Database (**Table 1**). All tumors underwent sequencing with the Tempus xT or xE assay, including targeted-panel DNA and/or full-transcriptome RNA-seq.
- Ancestry was estimated from DNA-seq data.
- Mutational prevalence, gene expression, and gene set enrichment (hallmark and oncogenic signature sets) were compared between EA and AA groups.
- All comparisons were stratified by stage and BC subtype, HR+/HER2- and triple-negative breast cancer (TNBC).

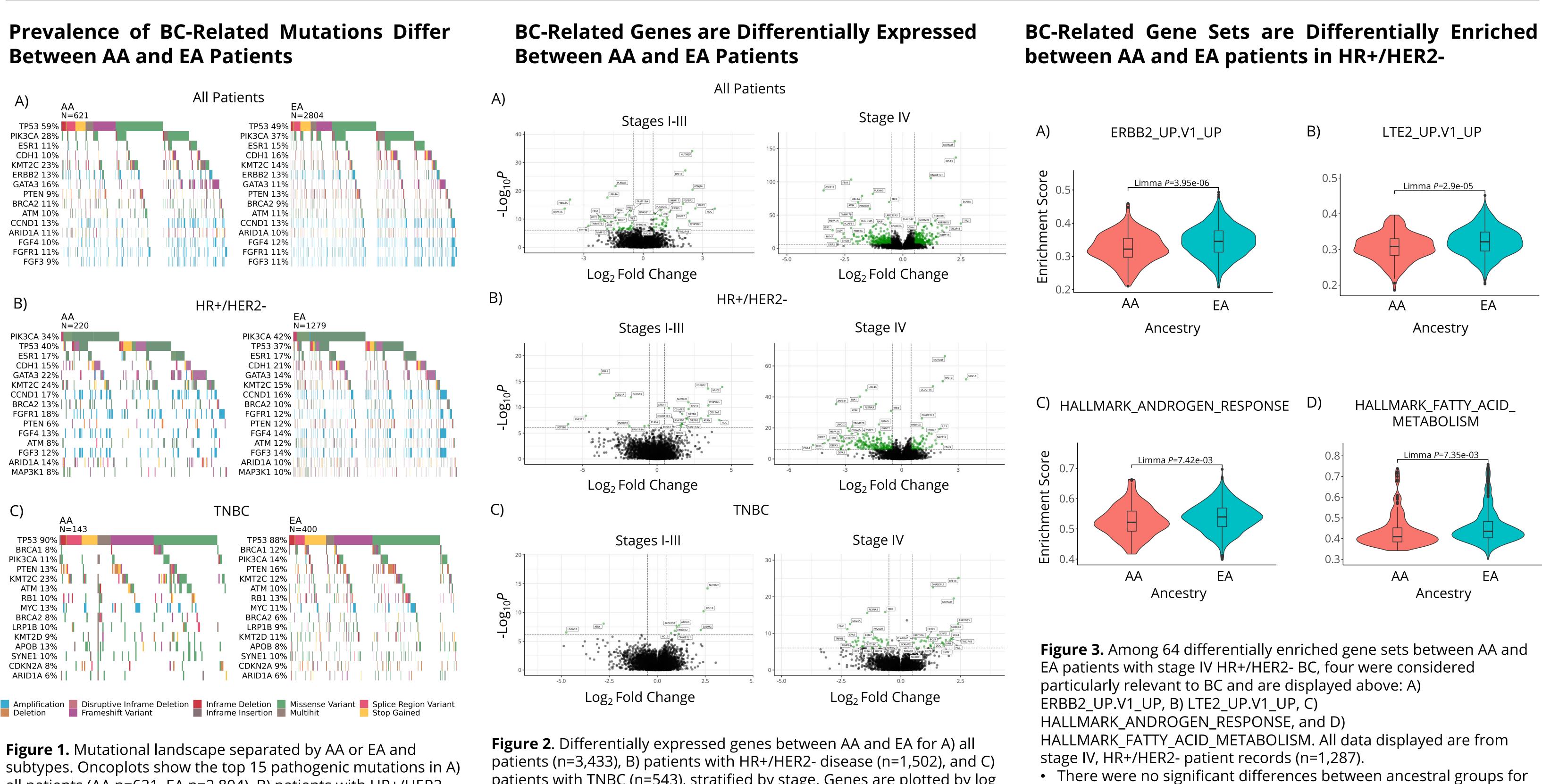
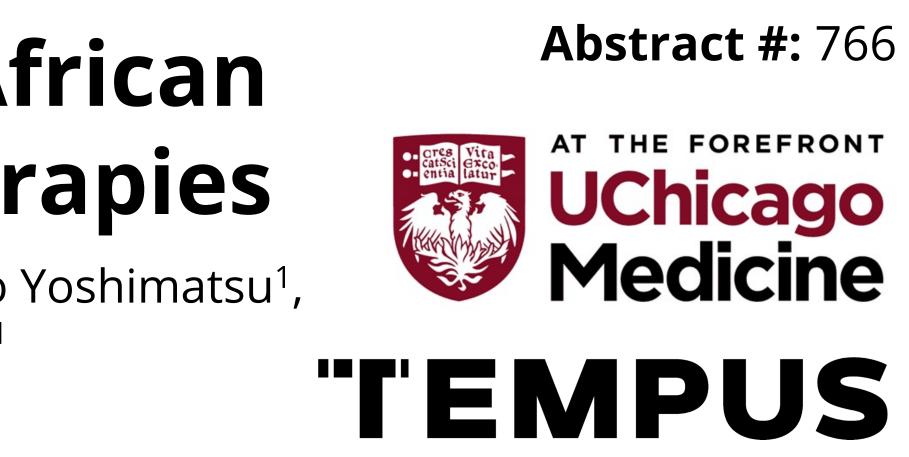

Characteristic	African Ancestry Samples (N=623)	European Ancestry Samples (N=2810)
Median Age (years)	53.74	56.01
Stage, n (%)		
0	0 (0.00)	1 (0.04)
	11 (1.77)	92 (3.27)
	48 (7.70)	152 (5.41)
	45 (7.22)	193 (6.87)
IV	519 (83.31)	2372 (84.41)
Subtype, n (%)		
HR+/HER2-	221 (35.47)	1281 (45.59)
Triple-Negative	143 (22.95)	400 (14.23)
Other	259 (41.57)	1129 (40.18)
Tumor Grade, n (%)		
Low	163 (26.16)	980 (34.88)
High	354 (56.82)	1198 (42.63)
Unknown	106 (17.01)	632 (22.49)

Table 1. Demographics and clinical characteristics of the cohort.

SUMMARY

In HR+/HER2- and triple-negative breast cancers, we observed significant differences in mutational spectrums and gene expression between genetically determined African and European ancestries. Gene sets were differentially enriched by ancestry in HR+/HER2- but not triple-negative breast cancers. These findings may support future biomarker-informed research and, ultimately, precision cancer care.

RESULTS


all patients (AA n=621, EA n=2,804), B) patients with HR+/HER2disease (AA n=220, EA n=1279), and C) patients with TNBC (AA n=143, EA n=400).

- *TP53* was most commonly mutated and was significantly more prevalent in AA (60%) than EA (49%) patients (P=2.37e-06).
- *PIK3CA* was the second most prevalent and significantly more frequent in EA (37%) vs. AA (28%) patients (*P*=2.08e-05).
- *KMT2C* occurred at significantly higher rates in AA (23%) vs. EA (14%) patients (*P*=1.65e-08).

patients with TNBC (n=543), stratified by stage. Genes are plotted by log fold changes in expression and meta *P*-values, with the EA population taken as a reference for fold changes. Bonferroni *P*-value cutoffs are *P*=1e-06 for all plots. Genes with significantly different enrichment are highlighted in green. Over 8,000 genes with significantly different expression between the two ancestral groups were identified.

• *RPL10* and *NUTM2F* were expressed higher in AA patients throughout every subtype and stage, whereas *HSPA1A* and *ATRX* were significantly lower in AA patients for both HR+/HER2- and TNBC.

Acknowledgements: We thank Matthew Kase and Alexandria Bobe from the Tempus Scientific Communications team for help with poster assembly and review.

stage III HR+/HER2- or any stage of TNBC (data not shown).