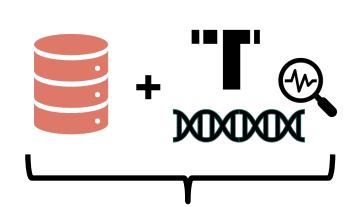
Impact of RAS Mutations on Immunologic Characteristics of the Tumor Microenvironment in Patients With Microsatellite Instability-High or Mismatch-Repair-Deficient Colorectal Cancer


Mohamed E. Salem¹, Thierry Andre², Sherif El-Refai³, Christopher Thompson³, Elizabeth Mauer³, Scott Kopetz⁴, Josep Tabernero⁵, Frank Sinicrope⁶, Jeanne Tie⁷, Thomas J George⁸, Eric Van Cutsem⁹, Sara Lonardi¹⁰, Michael J Overman², and David Foureau¹

¹Levine Cancer Institute, Charlotte, NC, USA, ²Assistance Publique Hospitaux de Paris, France, ³Tempus Labs Inc, Chicago, IL, USA, ⁴MD Anderson, Houston, TX, USA, ⁵Vall d'Hebron University Hospital, Barcelona, Spain, ⁶Mayo Clinic, Rochester, MN, ⁷Walter and Eliza Hall Institute of Medical Research, Parkville, FL, USA, ⁹University of Leuven, Belgium, ¹⁰Instituto Oncologico Veneto, Italy

INTRODUCTION

- The KEYNOTE-177 trial demonstrated pembrolizumab's superiority over first-line chemotherapy in MSI-H/dMMR colorectal cancer (CRC), but patients with KRAS or NRAS mutations did not show the same benefit.
- The impact of RAS mutations on the tumor immune microenvironment (TIME) of microsatellite instability-high (MSI-H)/mismatch-repair-deficient (dMMR) CRCs has not been well characterized.
- In this study, we evaluated the relationship between RAS mutations and the TIME in a real-world cohort of patients with MSI-H/dMMR CRC.

METHODS

De-identified records of patients (N=463) with CRC sequenced by the Tempus xT next-generation sequencing (NGS) assay were retrospectively analyzed

MSI-H was determined by assessment of 239 loci and dMMR by IHC

Tumor mutational burden (TMB), neoantigen tumor burden (NTB, ScanNeo), PD-L1 expression, immune infiltration, canonical immune pathways (82 gene set signatures)

Overview of Demographics

Characteristic	Overall, N=463	<i>RAS</i> ^{WT} , n=353	RAS ^{mut} , n=110
*Gender, n (%)			
Female	271 (59%)	219 (62%)	52 (47%)
Unknown	1	1 0	
*Age, Median (IQR)	69 (57, 78)	71 (62, 79) 57 (47, 6	
Unknown	128	106	22
Race, n (%)			
White	228 (83%)	182 (83%)	46 (79%)
Black/African American	21 (7.6%)	15 (6.9%)	6 (10%)
Asian	3 (1.1%)	3 (1.4%)	0 (0%)
Other	24 (8.7%)	18 (8.3%)	6 (10.3%)
Unknown	187	135	52
*Stage, n (%)			
Stage I	19 (4.9%)	17 (5.7%)	2 (2.3%)
Stage II	83 (22%)	69 (23%)	14 (16%)
Stage III	90 (23%)	76 (26%)	14 (16%)
Stage IV	192 (50%)	135 (45%)	57 (66%)
Unknown	79	56	23

*Indicates significance by RAS^{mut} status following Pearson's Chi-squared test, Fisher's exact test, or Wilcoxon rank-sum test; Age reflects data at diagnosis; Stage reflects data available closest to biopsy collection. ‡ Percentages reflect number of patients for each metric out of all patients with reported data for that respective metric (total less missing population).

SUMMARY

- In a cohort of 463 patients with MSI-H/dMMR CRC, TIME of RAS^{mut} tumors had lower neoantigen production and lower tumor inflammation than RASWT tumors.
- Overall, these data suggest that MSI-H/dMMR RAS^{mut} CRCs are less immunogenic and contain a TIME that may be less sensitive to immune checkpoint blockade compared to MSI-H/dMMR RAS^{wt} CRCs.

RAS^{mut} Impacts Tumor CRCs Immune

Microenvironment

RESULTS

Molecular Characteristics

Characteristic	Overall, N=463	RAS ^{WT} , n=353	RAS ^{mut} , n=110	p-Value
MSI-H, n (%)	446 (97%)	340 (97%)	106 (97%)	8.0
Unknown	5	4	1	
TMB-H, n (%)	432 (96%)	328 (97%)	104 (95%)	0.2
Unknown	15	15	0	
*NTB, Median (IQR)	15 (10, 20)	16 (12, 20)	12 (9, 18)	<0.001
Unknown	39	36	3	
[†] PDL-1+, n (%)	39 (27%)	33 (31%)	6 (15%)	0.058
Unknown	318	247	71	

*Indicates significance by RAS status following Pearson's Chi-squared test, Fisher's exact test, or Wilcoxon rank-sum test.

†PD-L1 Status was only available for patients whose samples were assessed in-house by immunohistochemical staining.

‡ Percentages reflect number of patients for each metric out of all patients with reported data for that respective metric (total less missing population).

Table 2. RAS^{mut} tumors had a similar TMB but display significantly lower median NTB than RAS^{WT} (p<0.001). In a reduced cohort of patient tumors that underwent internal IHC, RAS^{mut} tumors demonstrated a trend towards less PD-L1 positivity, albeit nonsignificant in the reduced cohort.

Genomic Differences Between RAS^{mut} and RAS^{WT}

MSI-H/dMMR CRCs

*Comparisons were made by Pearson's Chi-squared tests with false-discovery rate correction

for multiple comparisons. Percentages reflect the proportion of patients in each group with a

Figure 1. Significant differences were observed in genomic alterations

co-occurring with RAS^{mut} compared to RAS^{WT}, including MLH1 (23%

vs. 8.8%, q<0.001), MSH6 (36% vs. 24%, q=0.017), APC (60% vs.

20%, q<0.001), ARID1A (54% vs 30%, q<0.001), PIK3CA (36% vs

Acknowledgements: We thank Amrita A. Iyer, PhD and.

Correspondence: Mohamed.Salem@atriumhealth.org

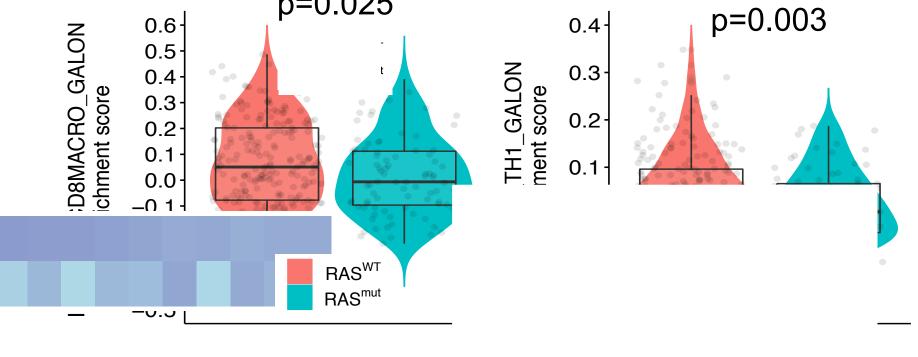
19%, *q*<0.001), and *TP53* (19% vs. 32% vs 19%, *q*=0.014).

Matthew Kase for poster assembly and review.

% Patients

100% 100% 80% 80% p=0.030p=0.01420% *Infiltrating immunocytes were compa

*N_{Total} patient tumors with RNA-Seq.


Figure 2. The proportions t in each tumor MSI-H/dMMR were estimated from RNA-RASWT, MSI-H/dMMR RAJ Cixes had level percentage of CD8+ T cell but higher percentage of CD4+ T cell infiltration

CRCs p=0.012 p=0.0040.31 0.26 vith RNA-Seq. data 0.24 p=0.021er Stem Cell ed significant upregulation (see Figure 5), Ø ₽ 0.12 J including Sonic Hedgehog and WNT /Catenin signaling pathways

Cancer Stem Cell Pathways Are Upregulated RAS^{mut}

(p<0.05).

Tumor Inflammation Decreases in RAS^{mut} CRCs

*N_{Total} patient tumors with RNA-Seq. data available= 327.

Figure 3. Tumor inflammation is mainly downregulated (see **Figure 5**) in *RAS*^{mut} tumors, including key pathways shown above: cytokine signaling (JAK-STAT, TH1), and adaptive immune events (CD8+ T cell, Tregs).

Immune-related Pathways Differentially Expressed by RAS^{mut} Status

*Unadjusted for false discovery.

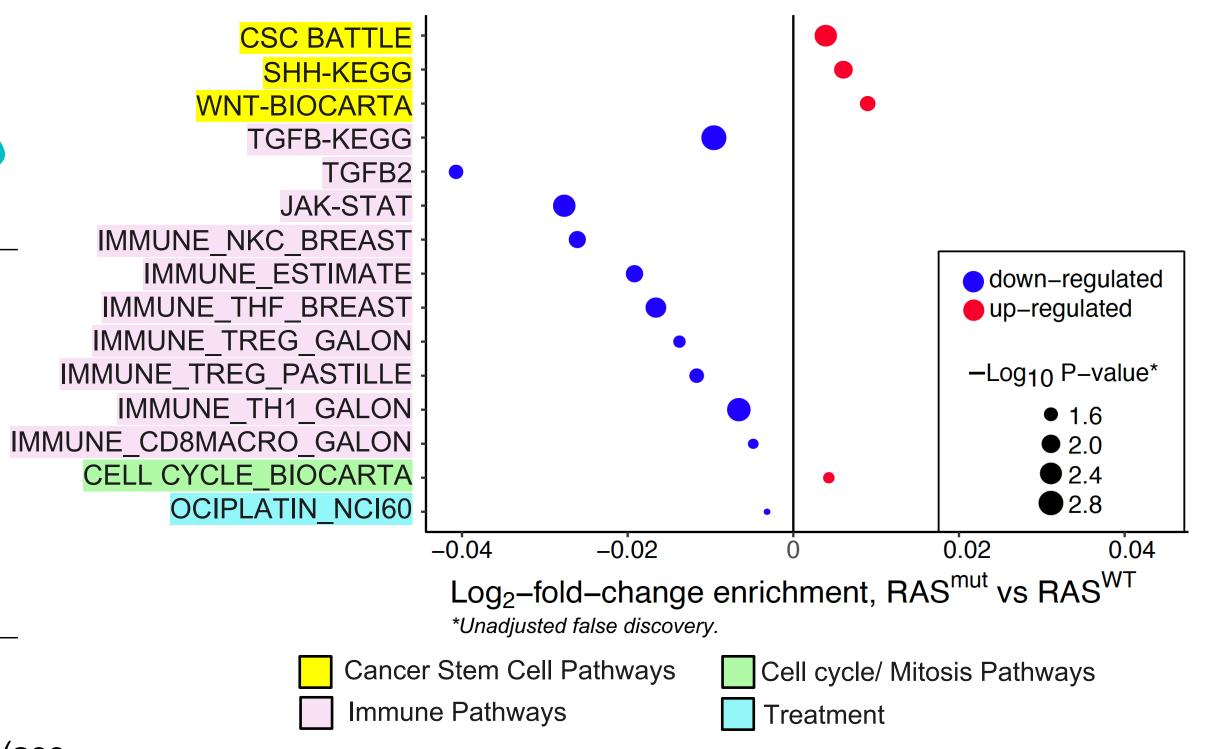


Figure 5. Pathway enrichment scores computed through GSVA (Gene Set Variation Analysis) were compared between RAS^{mut} and RAS^{WT} via differential expression analysis. Differentially expressed pathways (at 5% alpha level) are shown. No pathways were obtained when controlled for false discovery however, these serve as hypothesis-generating findings.

Pathogenic or Likely-Pathogenic somatic short variant.

