BRAF mutations and fusions in a real-world cohort of NSCLC patients

Jiaxin Niu¹, Elizabeth Mauer², Alexander S. Barrett², Arya Ashok² ¹Banner MD Anderson, Gilbert, AZ USA; ²Tempus Labs, Inc., Chicago, IL

INTRODUCTION

- BRAF V600E (type I) mutant non-small cell lung cancer (NSCLC) is well characterized
- Less is known about other types of BRAF mutations or BRAF fusions in this population
- Previous studies have suggested that different types of BRAF mutations may have varied clinical implications, motivating further study to guide therapeutic options in clinical practice.

We characterize the type of BRAF and co-occurring mutations as well as BRAF fusions in a real-world NSCLC cohort using comprehensive genomic profiling (CGP)

METHODS

*DNA-seq of 595-648 genes at 500x coverage; Whole-exome capture RNA-seq

SUMMARY

RESULTS

Patient Demographics					
Patient Characteristic	Type I N = 87	Type II N = 82	Type III N = 83	p-va	
Age				0.	
Median (IQR) ¹	68 (62, 74)	67 (60, 76)	69 (61, 76)		
Range	48,89	41,88	46,92		
Unknown	9	8	8		
Gender				0.	
Female	49 (56%)	42 (51%)	42 (51%)		
Male	38 (44%)	40 (49%)	40 (49%)		
Unknown	0	0	1		
Race				0.	
White	40 (73%)	40 (75%)	33 (67%)		
Black/African American	11 (20%)	10 (19%)	12 (24%)		
Asian	3 (5.5%)	0 (0%)	1 (2%)		
Alaska Native	1 (1.8%)	0 (0%)	0 (0%)		
Other	0 (0%)	3 (5.7%)	3 (6.1%)		
Unknown	32	29	34		
Ethnicity				0.8	
Non-Hisp/Latino	30 (91%)	23 (96%)	34 (94%)		
Hispanic/Latino	3 (9.1%)	1 (4.2%)	2 (5.6%)		
Unknown	54	58	47		
Smoking Status				<0.0001	
Current/former smoker	60 (76%)	73 (97%)	71 (95%)		
Never smoker	19 (24%)	2 (2.7%)	4 (5.3%)		
Unknown	8	7	8		
¹ IQR: Interquartile rang	ge				

• DNA and RNA-seq analysis showed that BRAF Class II and Class III mutations are associated with distinct genomic characteristics as compared to Class I, such as more frequent concurrent RAS and NF1 mutations. • BRAF fusions were also detected, predominantly via RNA sequencing

• Genomic analysis identified several significant differences in the co-mutational landscape of distinct BRAF classes including EGFR, KRAS, and NF1 (q<0.05) • Pathogenic EGFR mutations were more prevalent in class I (20%) vs class II (6.1%) and class III (7.2%) • By contrast, KRAS mutations were more prevalent in class II (13%) and class III (19%) compared to class I (3.4%) • NF1 mutations were more prevalent in class II (9.8%) and class III (12%) vs class I (2.3%) • DNA and RNA gene fusion analysis identified 13 patients with reported pathogenic BRAF fusions; of these, 11/13 were only identified via RNA-seq

CN amplification		
¹ n (%) Table 2	2. S ¹	
	S	
Chavesteristic		
Characteristic		
ГР53	4	
SETD2	2	
EGFR	1	
KRAS	3	
STK11		
KEAP1	2	
NF1	2	
n (0/) 2 Dooroon's Chi a	auar	

and loss omitted for EGFR.

Table 1. Demographic characteristic information for all patients
 included in this study

