

The genomic, transcriptomic, and epigenomic landscape of isocitrate dehydrogenase wild-type glioblastoma across the age continuum

Margaret O. Johnson¹, April Charlotte Bell², Yajas Shah³, Kayla Viets-Layng⁴, Elizabeth Mauer⁴, Joanne Xiu⁵, Olivier Elemento⁶, Michael J. Glantz⁷, Phillip Walker⁸, Clark C Chen⁹, Erin M. Dunbar¹⁰, Ekokobe Fonkem¹¹, Santosh Kesari¹², Andrew J. Brenner¹³, Herbert B. Newton¹⁴, Justin T. Low¹, ²Ashley Love Sumrall¹⁵, Wolfgang Michael Korn⁵, David M. Ashley¹, Derek A. Wainwright²

¹The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, ²Northwestern University, Feinberg School of Medicine, Chicago, IL, ³Weill Cornell Medicine, Elemento Lab, New York, NY, USA, ⁴Tempus Labs, Inc., Chicago, IL, ³Weill Cornell Medicine, Elemento Lab, New York, NY, USA, ⁴Tempus Labs, Inc., Chicago, IL, ⁴ CENTER USA, ⁵Caris Life Sciences, Phoenix, AZ, ⁶ Institute for Computational Biomedicine, Weill Cornell Medical Center, Hershey, PA, ⁸Caris Life Sciences, Irving, TX, ⁹University of Minnesota Medical School, Minneapolis, MN, ¹⁰Piedmont Brain Tumor Center, Piedmont Atlanta, GA, ¹¹Barrow Neurological Institute, Santa Monica, CA, ¹³UT Health San Antonio, *at Duke...there is HOPE* at the second s Mays Cancer Center, MD Anderson Center, San Antonio. TX, ¹⁴AdventHealth Medical Group, Orlando, FL, ¹⁵Atrium Health Levine Cancer Institute, Charlotte, NC, USA

BACKGROUND

- Older age is a poor prognostic factor for patients with glioblastoma (GBM).
- The incidence rate of GBM increases with age and is highest among patients 75 to 84 years old.
- The underlying biological mechanisms that contribute to poorer outcomes in older patients with GBM have not been comprehensively explored to-date.
- In the literature, established biomarkers such as MGMT promoter methylation status, PTEN-, EGFR-, and TP53-mutations do not reliably vary between older versus younger patients with GBM.

RESULTS

Table 2. Gene expression in older vs younger GBM

Gene	Caris <65, N=902	Caris >=65, N=530	Caris p-value	Tempus <65, N=616 (log10)	Tempus >=65, N=347 (log10)	Tempus p-value	Significant Datasets
LAG3	0.38	0.41	0.544	1.50	1.44	<0.0001	1
PDCD1	0.30	0.33	0.144	1.62	1.62	0.935	0
CD274	3.74	3.61	0.369	1.87	1.9	0.444	0
CD3E	0.65	0.59	0.098	1.27	1.24	0.922	0
TNFRSF18	0.26	0.25	0.724	1.41	1.40	0.251	0
CD40	2.14	2.10	0.291	1.95	1.93	0.099	0
CD8A	0.69	0.61	0.226	1.15	1.11	0.690	0
TNFRSF4	0.46	0.43	0.278	1.84	1.80	0.120	0
IDO1	0.31	0.23	0.002	0.90	0.89	0.939	1
CTLA4	0.30	0.29	0.076	1.17	1.18	0.840	0
HAVCR2	32.44	31.37	0.637	2.83	2.85	0.061	0
TNFSF9	0.22	0.20	0.116	0.98	0.96	0.817	0
CDKN2A	1.97	2.03	0.945	1.84	1.75	0.044	0

OBJECTIVE

Identify differences in the intratumoral molecular landscape at the genomic, transcriptomic and epigenomic levels, between younger and older patients with GBM.

METHODS

- In accordance with the 2021 WHO classification scheme, we included only isocitrate dehydrogenase (IDH) wild type GBM.
- \clubsuit Based on published literature, we defined older as age ≥ 65 .
- RNA expression, gene amplification, tumor mutational burden (TMB) and mutational profiles in patients <65 versus \geq 65 were analyzed in three unique datasets: Tempus (n = 1,410), Caris (n = 1,432), and the Cancer Genome Atlas (TCGA) (n = 557).
- For Caris and Tempus data analyses, patient characteristics, along with molecular and sequencing data were compared at the time of tissue collection by Pearson's Chi-squared tests/Fisher's exact tests or Wilcoxon rank-sum tests, as appropriate.
- Using TCGA data, intratumoral DNA methylation, gene expression, TMB, and DNAm age acceleration were compared in older versus younger patients with GBM.

TCGA

- TGCA data demonstrated that gene expression, TMB, and methylation did not change significantly with age.
- Additionally, PCOLCE2 and SLC10A4 (Fig.1) were differentially methylated, and missense mutations, of any type, were more common in the older group (p=0.006).
- \diamond Compared to patients \geq 65 years old, DNAm age acceleration is increased in patients <65 years old (p=0.0022) (Fig.2).

Figure 1.

DNA Methylation: <65 years (n=170) $\leftrightarrow \ge 65$ years (n=92)

THE PRESTON ROBERT

BRAIN TUMOR

SCH

- There was no universal agreement between clinical databases for differences in gene expression or DNA amplification.
- \checkmark TERT promoter mutations were more prevalent in patients \geq 65 years old (Caris 82.64 vs 77.27%, p = 0.016; Tempus 58.0 vs 49.0%, p = 0.002).
- MGMT promoter methylation by PyroSeq (Caris data only) was more common in the older group (49.73 v 34.14%, p < 0.001).

Table 1. DNA amplification and mutations in older vs younger GBM

	Caris Positive (Age <65)	Caris Negative (Age <65)	Caris Positive (Age >=65)	Caris Negative (Age >=65)	Caris p-value	Tempus Positive (Age <65)	Tempus Negative (Age <65)	Tempus Positive (Age >=65)	Tempus Negative (Age >=65)	Tempus p-value	Significant Datasets
MGMT-Me	299 (34.33%)	572 (65.67%)	261 (50.68%)	254 (49.32%)	2.04E- 09	N/A	N/A	N/A	N/A	N/A	1
IHC PD-L1	184 (21.45%)	674 (78.55%)	90 (17.68%)	419 (82.32%)	0.093	57 (20.0%)	230 (80.0%)	41 (21.0%)	152 (79.0%)	0.712	0
dMMR/MSI-H	7 (0.78%)	895 (99.22%)	8 (1.51%)	522 (98.49%)	0.188	11 (0.9%)	882 (99.1%)	1 (0.2%)	483 (99.8%)	0.067	0
CDK6 amplification	8 (0.89%)	890 (99.11%)	9 (1.70%)	519 (98.30%)	0.172	11 (1.2%)	904 (98.8%)	1 (0.2%)	494 (99.8%)	0.067	0
EGFR amplification	324 (36.04%)	575 (63.96%)	182 (34.47%)	346 (65.53%)	0.549	267 (29.0%%)	648 (71.0%)	151 (31.0%)	344 (69.0%)	0.603	0
NGS-EGFR	167 (18.56%)	733 (81.44%)	81 (15.31%)	448 (84.69%)	0.118	110 (12.0%)	805 (88.0%)	65 (13.0%)	430 (87.0%)	0.546	0
EGFRvIII mutations	197 (21.86%)	704 (78.14%)	104 (19.62%)	426 (80.38%)	0.315 (RNAse q)	87 (9.5%)	828 (90.0%)	44 (8.9%)	451 (91.0%)	0.702 (DNAseq)	0
EGFR Fusion	11 (1.24%)	874 (98.76%)	4 (0.76%)	520 (99.23%	0.397	45 (4.9%)	870 (95.0%)	23 (4.6%)	472 (95.0%)	0.820	0
MET Fusion	11 (1.22%)	890 (98.78%)	8 (1.51%)	520 (98.48%)	0.639	0 (0.0%)	915 (100%)	0 (0.0%	495 (100%)	N/A	0
TERT*	697 (77.27%)	205 (22.73%)	438 (82.64%)	92 (17.36%)	0.016	452 (49.0%)	463 (51.0%)	288 (58.0%)	207 (42.0%)	0.002	2
NGS-PTEN	268 (30.77%)	603 (69.23%)	182 (35.0%)	338 (65.0%)	0.103	261 (29.0%	654 (71.0%)	144 (29.0%)	351 (71.0%)	0.823	0
NGS-TP53	258 (28.67%)	642 (71.33%)	170 (32.14%)	359 (67.86%)	0.167	170 (19.0%)	745 (81.0%)	77 (16.0%)	418 (84.0%)	0.154	0
NGS-NF1	131 (14.57%)	768 (85.43%)	79 (14.96%)	449 (85.04%	0.841	99 (11.0%)	816 (89.0%)	59 (12.0%)	436 (88.0%)	0.532	0

CONCLUSIONS

- Despite worse survival outcomes for older patients with GBM compared to younger counterparts, the molecular landscape is similar at the genomic, transcriptomic and epigenomic levels.
- TERT promoter mutations are more common in older patients, while MGMT

promoter methylation may be more common, it will require further validation. Further investigation into PCOLCE2 and SLC10A4 is warranted. However, it's

unlikely that this isolated difference can fully account for poorer outcomes in older GBM.

• We hypothesize that poorer survival in older patient with GBM is not likely to be attributable solely to intratumoral factors.