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OBJECTIVE

BACKGROUND

RESULTS

TCGA

v Older age is a poor prognostic factor for patients with glioblastoma (GBM).
v The incidence rate of GBM increases with age and is highest among patients 75 to 

84 years old.
v The underlying biological mechanisms that contribute to poorer outcomes in older 

patients with GBM  have not been comprehensively explored to-date. 
v In the literature, established biomarkers such as MGMT promoter methylation 

status, PTEN-, EGFR-, and TP53-mutations do not reliably vary between older 
versus younger patients with GBM.

v Identify differences in the intratumoral molecular landscape at the genomic, 
transcriptomic and epigenomic levels, between younger and older patients with 
GBM.

v In accordance with the 2021 WHO classification scheme, we included only 
isocitrate dehydrogenase (IDH) wild type GBM. 

v Based on published literature, we defined older as age ≥ 65.
v RNA expression, gene amplification, tumor mutational burden (TMB) and 

mutational profiles in patients <65 versus ≥ 65 were analyzed in three unique 
datasets: Tempus (n = 1,410), Caris (n = 1,432), and the Cancer Genome Atlas 
(TCGA) (n = 557). 

v For Caris and Tempus data analyses, patient characteristics, along with molecular 
and sequencing data were compared at the time of tissue collection by Pearson’s 
Chi-squared tests/Fisher’s exact tests or Wilcoxon rank-sum tests, as appropriate.

v Using TCGA data, intratumoral DNA methylation, gene expression, TMB, and 
DNAm age acceleration were compared in older versus younger patients with 
GBM.

v TGCA data demonstrated that gene expression, TMB, and methylation did not 
change significantly with age.

v Additionally, PCOLCE2 and SLC10A4 (Fig.1) were differentially methylated, 
and missense mutations, of any type, were more common in the older group 
(p=0.006). 

v Compared to patients ≥65 years old, DNAm age acceleration is increased in 
patients <65 years old (p=0.0022) (Fig.2). 

Table 2. Gene expression in older vs younger GBM 

v Despite worse survival outcomes for older patients with GBM compared to 
younger counterparts, the molecular landscape is similar at the genomic, 
transcriptomic and epigenomic levels. 

v TERT promoter mutations are more common in older patients, while MGMT 
promoter methylation may be more common, it will require further validation. 

v Further investigation into PCOLCE2 and SLC10A4 is warranted. However, it’s 
unlikely that this isolated difference can fully account for poorer outcomes in older 
GBM.

v We hypothesize that poorer survival in older patient with GBM is not likely to be 
attributable solely to intratumoral factors.

RESULTS
v There was no universal agreement between clinical databases for differences 

in gene expression or DNA amplification.
v TERT promoter mutations were more prevalent in patients ≥ 65 years old 

(Caris 82.64 vs 77.27%, p = 0.016; Tempus 58.0 vs 49.0%, p = 0.002). 
v MGMT promoter methylation by PyroSeq (Caris data only) was more common 

in the older group (49.73 v 34.14%, p < 0.001).  

Caris
Positive 

(Age <65)

Caris
Negative 
(Age <65)

Caris
Positive 

(Age 
>=65)

Caris
Negative 

(Age 
>=65)

Caris
p-value

Tempus
Positive 

(Age 
<65)

Tempus
Negative 

(Age 
<65)

Tempus
Positive 

(Age 
>=65)

Tempus
Negative 

(Age 
>=65)

Tempus
p-value

Significant 
Datasets

MGMT-Me 299
(34.33%)

572
(65.67%)

261
(50.68%)

254
(49.32%)

2.04E-
09 N/A N/A N/A N/A N/A 1
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LAG3 0.38 0.41 0.544 1.50 1.44 <0.0001 1
PDCD1 0.30 0.33 0.144 1.62 1.62 0.935 0
CD274 3.74 3.61 0.369 1.87 1.9 0.444 0
CD3E 0.65 0.59 0.098 1.27 1.24 0.922 0

TNFRSF18 0.26 0.25 0.724 1.41 1.40 0.251 0
CD40 2.14 2.10 0.291 1.95 1.93 0.099 0
CD8A 0.69 0.61 0.226 1.15 1.11 0.690 0

TNFRSF4 0.46 0.43 0.278 1.84 1.80 0.120 0
IDO1 0.31 0.23 0.002 0.90 0.89 0.939 1

CTLA4 0.30 0.29 0.076 1.17 1.18 0.840 0
HAVCR2 32.44 31.37 0.637 2.83 2.85 0.061 0
TNFSF9 0.22 0.20 0.116 0.98 0.96 0.817 0
CDKN2A 1.97 2.03 0.945 1.84 1.75 0.044 0

Table 1. DNA amplification and mutations in older vs younger GBM

Figure 1. Figure 2. 


