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What is Drug-induced Long QTc?
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« Drug-induced long QTc is an iatrogenic
delay in ventricular repolarization
which can lead to the life-threatening v
arrhythmia, torsades de pointes (TDP) " oo -/\r
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Fig. 1. An illustration of drug-induced QT-interval prolongation and the R-on-T ph that ini lez de pointes (TdP) arrhythmia on the electro-
cardiogram (ECG).
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Current Solutions

isdale Score Optimized RISQ-PATH Score
» Predicts QTc >500 ms or >60 ms * Broader application
compared to baseline « Applicable to outpatient
» Prospective, observational study * Moderate performance: AUC=0.772
of 1,200 patients in cardiac critical
care unit

* Good performance: AUC=0.832

- Limitation: lack of generalizability * Limitation: data collected at target
due to inpatient focus ECG, not reflecting baseline status
at drug start
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Potential for a Machine Learning
Approach

> Eur Heart J. 2021 Oct 7;42(38):3948-3961. doi: 10.1093/eurheartj/ehab588.

Deep learning analysis of electrocardiogram for risk
prediction of drug-induced arrhythmias and
diagnosis of long QT syndrome

aC I n e e a r n I n g aS Edi Prifti ' 2, Ahmad Fall !, Giovanni Davogustto 3, Alfredo Pulini 1 4, Isabelle Denjoy 5,

Christian Funck-Brentano €, Yasmin Khan 7, Alexandre Durand-Salmon 7, Fabio Badilini 8,

demonstrated high accuracy

Fabrice Extramiana , Joe-Elie Salem 3 6 @

(e.g., AUROC >0.900) on

February 10, 2021

targ etS re I ated tO QTC b Ut h aS Use of Art!ﬁcial Inte!ligence a!1d DeeP Neural
not been used to produce a Hectrocardiographically Concealed Long QT
gene ral CI N |Ca| model Wlth h Ig h Syndrome From the Surface 12-Lead

Electrocardiogram

a C C u r a Cy J. Martijn Bos, MD, PhD"2; Zachi I. Attia, PhD3; David E. Albert, MD*; et al

» Author Affiliations | Article Information

JAMA Cardiol. 2021;6(5):532-538. doi:10.1001/jamacardio.2020.7422

ELECTROPHYSIOLOGY AND ARRHYTHMIAS
SESSION TITLE: MACHINE LEARNING FOR ARRHYTHMIA PREDICTION

Abstract 15056: Machine Learning Prediction of Long QT Syndrome

Steven Simon, Divneet Mandair, Michael A Rosenberg and Premanand Tiwar

Originally published 12 Nov 2020 | https://doi.org/10.1161/circ.142.suppl_3.15056 | Circulation. 2020;142:A15056
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Design Criteria

* Highly accurate across a variety of clinical settings and
scenarios

 Derived and validated utilizing data commonly available in the
electronic health record (EHR) at the time of medical decision-

making

« Assessment of drug-induced long QTc risk in general population
as opposed to a congenital LQTS population
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Study Design

Structure EHR features
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Study Population

Index

-3 year -1 year Time 0 1 year
I | I
I | |

! Epic EHR features |- Target ECG: i
XGB Set { — = ............. i > Endpoint: QTC > 500 mS
Baseline ECG features |«—— Prediction —»:
window -
ECG . Baseline ECG traces : from target on-drug ECG
DNN set :
XGB dataset ECG DNN dataset
N patients | 345,371 182,448
% Long QTc | 5.7% 7.7%
Median Age, yrs |62 [48, 74] 66 [54, 78]
% Male sex |45% 47%
Total med count |2 [1, 3] 2[1, 3]
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Both XGBoost and DNN Trace Models Show
Comparable Performance

091 86.4% 86.9% 87.4%
. : » Dataset:
S 6 . + N = 182,448,
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Machine Learning Shows Superior Predicting
Power to Tisdale and RISQ-PATH

AUC: 0.86 AUC: 0.86
0.8 -
> >0.6-
> =
2 2
3 3 0.4
0.2 1
— XGB — XGB
‘ — Tisdale , —— RISQ-PATH
0.0 | | | | 0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity
N=110,588, 8.8% long QTc N=345,371, 5.7% long QTc
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Machine Learning Shows Superior
Performance in All Clinical Settings

Admission ®mmm ED mmm Office visit

1) 09 =
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Q 08 - | Office Visit 32,271 3.3
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w00 « Tisdale scores were predominantly

:’EJ calculated in hospital admissions
0.5 -

Tisdale XGB * |n contrast, 75% of the overall dataset
(Tisdale subset) were from outpatient records
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Machine Learning Model Has Better PPV

« When matching number of patients predicted as high-risk for long QTc,
XGBoost model shows superior PPV (>50%) as compared to Tisdale and

Gelsinger

RISQ-PATH
% Long | % Predlcted

Tisdale 97.6 28.3 [:(1) g

8.8 [1 7 4 5] [6. 5 13 1] [96.3, 98.8] | [25.1, 31.5] 92.6]

XGBoost 18.0,9.7] 3.1 28.9 98.5 54.0 95.8
[2.4, 3.8] [22.2, 35.5] [98.0, 99.0] | [49.8, 58.3] | [95.1, 96.5]

2.0 9.8 98.5 28.3 94.7
AUSOAAAUL : [1.3, 2.7] [6.7,12.9] [97.9,99.0] | [25.8, 30.7] | [94.1, 95.3]

XGBoost [5.2, 6.2] 2.0 21.4 99.2 61.5 95.4
[1.5, 2.5] [16.5, 26.3] [98.9, 99.5] | [56.8, 66.2] | [94.8, 96.0]
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Conclusions

* Machine learning models, either using structured EHR features or
using ECG traces alone, can predict drug-induced QTc prolongation
at medication initiation in a general clinical population with high
accuracy

» Composite model using both EHR features and DNN risk score shows
marginal improvement in model performance

* Machine learning model is superior to clinical risk predictors, Tisdale
and RISQ-PATH at different clinical settings and operating points
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Limitations

. I\/]lodel trained on all QTc drugs: variable QTc risks and different mechanisms
of action

* Model was evaluated on commonly used, individual drugs but performance was unreliable
due to small sample size for single medication

« Model endpoint QTc >500 ms

« Rational:
» QTc > 500 ms can be harmful with or without TDP, e.g., interrupted or adjusted
pharmacotherapy
» QTc > 500ms is a reasonable surrogate for risk of death from TDP
 Limitation: TDP events may not be captured
» Death from TDP rarely captured on ECG

» Retrospective data from a single health system
« Could validate initial findings with external data and/or prospective study

Geisinger "TEMPUS



Acknowledgements

* Geisinger and Tempus teams
» Tempus Laboratories funding
* Thank you!

tmorland@qgeisinger.edu

Geisinger "TEMPUS


mailto:ecarruth@geisinger.edu

Appendix

Geisinger "TEMPUS



Machine Learning Model Shows Better Metrics
than Original Tisdale/RISQ-PATH Studies

* When matching sensitivities originally reported by Tisdale and
RISQ-PATH, XGBoost model shows better specificity.

% Long | % Predicted e s cpr s
_ QTec Hiah-risk Sensitivity | Specificity
Original Tisdale
5.7 21.6 74.3 81.6
XGBoost [52,6.2] [16.4,26.7] [65.7,82.8] [76.5,86.7]

Original 87.4 46.2

Optimized RISQ- 5.9
PATH Cohort [86.2, 88.5] [45.8, 46.6]

XGBoost 5.7 52.8 92.4 49.7
[5.2,6.2] [41.8,63.7] [88.2,96.6] [38.3,61.0]
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Patient Characteristics

Variable | Median[IQR] or % Variable | Median[IQR] or %

N patients 345,371 Heart failure 13%

Long QTc |5.7% Diabetes |21%
Age, yrs | 62.2 [48.4, 74.4] Hypertension | 49%
Male sex |45.1% Myocardial Infarction | 11%

White race | 95.7% QTc, ms 440 [421, 462]
BMI, kg/cm?|29.5 [25.1, 35] Max QTc ever | 456 [434, 484]
Ever smoker 51.7% QTc med count |2 [1, 3]

Potassium 4.2 [3.9, 4.5] Sr. Creatinine |0.9 [0.8, 1.1]
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Machine Learning Shows Superior
Performance in All Clinical Settings

Admission ®mmm ED mmm Office visit

™ Setting__| Data sze % Long aTe

0.9 -
§ 0.8 - ! ' NN 32,271 3.3
¢ 62,528 13
€074 ! 15,759 3.6
§ 0-6 7 G 262,294 4.1
< 66,137 12.9
0.5 =

Tisdale XGB XGB Overall 16,940 3.7

(Tisdale subset)
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