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What is Drug-induced Long QTc?

• Drug-induced long QTc is an iatrogenic 
delay in ventricular repolarization 
which can lead to the life-threatening 
arrhythmia, torsades de pointes (TDP)

• >200 drugs are QTc prolongers
• Antiarrhythmics
• Antibiotics
• Antipsychotics
• Antidepressants
• Cancer therapies



Current Solutions
Tisdale Score
• Predicts QTc >500 ms or >60 ms

compared to baseline
• Prospective, observational study 

of 1,200 patients in cardiac critical 
care unit
• Good performance: AUC=0.832

• Limitation: lack of generalizability 
due to inpatient focus

Tisdale et al. (2013): Circulation: Cardio Quality/Outcomes
Vandael et al. (2018): British Journal of Clinical Pharmacology

Optimized RISQ-PATH Score
• Broader application

• Applicable to outpatient
• Moderate performance: AUC=0.772

• Limitation: data collected at target 
ECG, not reflecting baseline status 
at drug start



Potential for a Machine Learning 
Approach
Machine learning has 
demonstrated high accuracy 
(e.g., AUROC >0.900) on 
targets related to QTc but has 
not been used to produce a 
general clinical model with high 
accuracy



Design Criteria
• Highly accurate across a variety of clinical settings and 

scenarios
• Derived and validated utilizing data commonly available in the 

electronic health record (EHR) at the time of medical decision-
making
• Assessment of drug-induced long QTc risk in general population 

as opposed to a congenital LQTS population



Study Design

Demographics

Vital Signs

Lab tests

Medications

ECG measures ECG patterns

12-lead, 10-second voltage data
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Study Population
Index

Time 0

QTc drug startPre-drug start QTc drug end

Epic EHR features

-1 year

Baseline ECG features

-3 year

Target ECG

1 year

Prediction 
window

Baseline ECG traces

Ø Endpoint: QTc > 500 ms

from target on-drug ECG

XGB dataset ECG DNN dataset
N patients 345,371 182,448

% Long QTc 5.7% 7.7%
Median Age, yrs 62 [48, 74] 66 [54, 78]

% Male sex 45% 47%
Total med count 2 [1, 3] 2 [1, 3]

XGB set

ECG 
DNN set



• Dataset: 
• N = 182,448, 
• 7.7% long QTc (>500 ms)

• No significant improvement in 
composite model 

Both XGBoost and DNN Trace Models Show 
Comparable Performance

EC
G

 tr
ac

e 
+ 

ag
e/

se
x

St
ru

ct
ur

ed
 E

H
R

 fe
at

ur
es

EH
R

 fe
at

ur
es

 +
 

D
N

N
 ri

sk
 s

co
re

All models were evaluated by 5-fold cross-validation 
(reported as mean[95% CI])

86.4% 86.9% 87.4%



Machine Learning Shows Superior Predicting 
Power to Tisdale and RISQ-PATH

N=110,588, 8.8% long QTc N=345,371, 5.7% long QTc

Tisdale scores were only available in patients with 
ECGs within 24h of drug start

AUC: 0.86

AUC: 0.77

AUC: 0.86

AUC: 0.70



Machine Learning Shows Superior 
Performance in All Clinical Settings

Setting Data size % Long QTc
Total 110,588 8.8

Office Visit 32,271 3.3
Admission 62,528 13

ED 15,759 3.6

• Tisdale scores were predominantly 
calculated in hospital admissions 

• In contrast, 75% of the overall dataset 
were from outpatient records



Machine Learning Model Has Better PPV
• When matching number of patients predicted as high-risk for long QTc, 

XGBoost model shows superior PPV (>50%) as compared to Tisdale and 
RISQ-PATH 

% Long 
QTc

% Predicted 
High-risk Sensitivity Specificity PPV NPV

Tisdale 8.8
[8.0, 9.7]

3.1
[1.7, 4.5]

9.8
[6.5, 13.1]

97.6
[96.3, 98.8]

28.3
[25.1, 31.5]

91.8
[90.9, 
92.6]

XGBoost 3.1 
[2.4, 3.8]

28.9 
[22.2, 35.5]

98.5 
[98.0, 99.0]

54.0 
[49.8, 58.3]

95.8 
[95.1, 96.5]

RISQ-PATH 5.7
[5.2, 6.2]

2.0
[1.3, 2.7]

9.8
[6.7, 12.9]

98.5
[97.9, 99.0]

28.3
[25.8, 30.7]

94.7
[94.1, 95.3]

XGBoost 2.0 
[1.5, 2.5]

21.4 
[16.5, 26.3]

99.2 
[98.9, 99.5]

61.5 
[56.8, 66.2]

95.4 
[94.8, 96.0]

Results are reported as mean [95% confidence 
interval] across 5 test folds



Conclusions
• Machine learning models, either using structured EHR features or 

using ECG traces alone, can predict drug-induced QTc prolongation 
at medication initiation in a general clinical population with high 
accuracy

Ø Composite model using both EHR features and DNN risk score shows 
marginal improvement in model performance

• Machine learning model is superior to clinical risk predictors, Tisdale 
and RISQ-PATH at different clinical settings and operating points



Limitations
• Model trained on all QTc drugs: variable QTc risks and different mechanisms 

of action
• Model was evaluated on commonly used, individual drugs but performance was unreliable 

due to small sample size for single medication

• Model endpoint QTc >500 ms
• Rational:

ØQTc > 500 ms can be harmful with or without TDP, e.g., interrupted or adjusted 
pharmacotherapy

ØQTc > 500ms is a reasonable surrogate for risk of death from TDP
• Limitation: TDP events may not be captured

ØDeath from TDP rarely captured on ECG

• Retrospective data from a single health system
• Could validate initial findings with external data and/or prospective study
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Appendix



Machine Learning Model Shows Better Metrics 
than Original Tisdale/RISQ-PATH Studies
• When matching sensitivities originally reported by Tisdale and 

RISQ-PATH, XGBoost model shows better specificity.
% Long 

QTc
% Predicted 

High-risk Sensitivity Specificity

Original Tisdale 
Cohort 30.7 74 77

XGBoost 5.7
[5.2, 6.2]

21.6
[16.4, 26.7]

74.3
[65.7, 82.8]

81.6
[76.5, 86.7]

Original 
Optimized RISQ-

PATH Cohort
5.9 87.4

[86.2, 88.5]
46.2

[45.8, 46.6]

XGBoost 5.7
[5.2, 6.2]

52.8
[41.8, 63.7]

92.4
[88.2, 96.6]

49.7
[38.3, 61.0]

Results are reported as mean [95% confidence 
interval] across 5 test folds



Patient Characteristics

Variable Median[IQR] or % Variable Median[IQR] or %
N patients 345,371 Heart failure 13%
Long QTc 5.7% Diabetes 21%

Age, yrs 62.2 [48.4, 74.4] Hypertension 49%
Male sex 45.1% Myocardial Infarction 11%

White race 95.7% QTc, ms 440 [421, 462]
BMI, kg/cm2 29.5 [25.1, 35] Max QTc ever 456 [434, 484]

Ever smoker 51.7% QTc med count 2 [1, 3]
Potassium 4.2 [3.9, 4.5] Sr. Creatinine 0.9 [0.8, 1.1]



Machine Learning Shows Superior 
Performance in All Clinical Settings

Setting Data size % Long QTc
Tisdale subset

Office Visit 32,271 3.3
Admission 62,528 13

ED 15,759 3.6
Overall dataset

Office Visit 262,294 4.1
Admission 66,137 12.9

ED 16,940 3.7


