The Mutational Landscape of 1172 Patients with Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer Treated with CDK4/6 Inhibitors

Ami N. Shah, MD¹, Bora Lim, MD², Monica Mita, MD³, Elizabeth Mauer, MS⁴, Kayla Viets Layng, PhD⁴, Calvin Chao, MD⁴, Adam Brufsky, MD, PhD⁵

¹Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E Superior, Chicago, IL 60611, ²Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 7200 Cambridge St., Houston, TX 77030, 3Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, ⁴Tempus Labs, 600 W Chicago, Chicago, IL 60654, ⁵Hillman Cancer Center, University of Pittsburgh Medical Center, 300 Halket St., Pittsburgh, PA 15213

"I'EMPUS

INTRODUCTION with different Metastatic Breas CDK4/6 cancer (MBC) inhibitors (CDK4/6i) associated with differential alterations? In this study we liquid biopsy months prior to biopsy

mutational landscapes and tumor mutational burden (TMB) in CDK4/6i treated HR+/HER2- MBC samples by treatment exposure

* Important previous work – PMIDS: 30205045¹, 32404308², 30206110³

METHODS

Genomic data from tumor sample

Receipt of CDK4/6i between HR+/HER2- MBC metastatic diagnosis date and patients (n=1172) biopsy collection >6 months

105-gene panel focused on detecting oncogenic and resistance mutations from cfDNA

Chi-squared/Fisher's Exact

tests or Kruskal-Wallis tests

RESEARCH POSTER PRESENTATION DESIGN © 2
www.PosterPresentations.com

Demographics, clinical characteristics, and NGS De-identified data findings compared Retrospectively between groups by

Prevalence of individual gene alterations like SNV/Indel, CNVs (pathogenic & nonpathogenic) were compared similarly with adjustment for analyzed false-discovery.

DNA-seq of 595-648 genes,

whole exome-capture RNA-sea

Acknowledgments: We thank Ellen Jaeger for data analysis, Emily Teslow Ph.D, and Amrita A. Iyer, Ph.D, for poster preparation and review.

Correspondence: brufskyam@upmc.edu

Cohort Characteristics

Characteristic	Overall , N = 1,172 ¹	Abemaciclib N = 122 ¹	Palbociclib $N = 954^{\circ}$	Ribociclib $N = 96^{7}$	p-value ²	
Age at diagnosis (yrs, IQR)	55 (45, 63)	52 (43, 60)	55 (46, 64)	51 (44, 61)	0.015	
Unknown	1	0	1	0		
Gender					0.2	
Female	1163 (99%)	122 (100%)	947 (99%)	94 (98%)		
Male	9 (0.8%)	0 (0%)	7 (0.7%)	2 (2.1%)		
Race					0.2	
White	625 (81%)	71 (83%)	503 (82%)	51 (71%)		
Black /African American	87 (11%)	9 (10%)	68 (11%)	10 (14%)		
Asian Other Race	31 (4.0%) 26 (3.4%)	3 (3.5%) 3 (3.5%)	24 (3.9%) 17 (2.8%)	4 (5.6%) 6 (8.3%)		
Native Hawaiian or Other Pacific Islander	2 (0.3%)	0 (0%)	2 (0.3%)	0 (0%)		
American Indian/Alaska	1 (0.1%)	0 (0%)	0 (0%)	1 (1.4%)		
Unknown	400	36	340	24		
Ethnicity					0.014	
Not Hispanic or Latino	398 (86%)	33 (87%)	339 (88%)	26 (70%)		
Hispanic or Latino Unknown	64 (14%) 710	5 (13%) 84	48 (12%) 567	11 (30%) 59		
Assay					< 0.001	
xF xT	684 (58%) 488 (42%)	87 (71%) 35 (29%)	527 (55%) 427 (45%)	70 (73%) 26 (27%)		
Tissue Site	100 (1270)	33 (27,0)	127 (1070)	20 (27,70)		
Blood Liver Other	684 (58%) 241 (21%) 87 (7.4%)	87 (71%) 15 (12%) 5 (4.1%)	527 (55%) 217 (23%) 75 (7.9%)	70 (73%) 9 (9.4%) 7 (7.3%)		
Breast	61 (5.2%) 38 (3.2%)	7 (5.7%)	52 (5.5%)	2 (2.1%)		
Lung Lymph nodes Bone	29 (2.5%) 26 (2.2%)	2 (1.6%) 4 (3.3%) 2 (1.6%)	32 (3.4%) 22 (2.3%) 23 (2.4%)	4 (4.2%) 3 (3.1%) 1 (1.0%)		
CNS	6 (0.5%)	0 (0%)	6 (0.6%)	0 (0%)		
¹ Median (IQR); n (%) ² Kruskal-Wallis rank sum test; Fisher's exact test; Pearson's Chi-squared test						

Other findings of interest:

- ESR1 mutations occurred at similar rates among each CDK4/6i treatment group
- RB1 mutation/RB1 loss was seen less frequently after exposure to Palbociclib than other CDK4/6i and only in a minority of patients
- MSI-high was identified in 2.5%, 0.1%, and 1.1% of the patients who received Abemaciclib, Palbociclib, and Ribociclib, respectively, P<0.001

p < 0.0001

Abemaciclib Palbociclib Ribociclib

Figure 2. Distributions of TMB values for each CDK 4/6 inhibitor with medians and interquartile ranges

Table 2. TMB assessment across CDK 4/6 inhibitors *TMB assessment only included patients with xT (tissue) testing (n=488 [42%])

RESULTS

Biomarker	Abemaciclib , $N = 122^{7}$	Palbociclib N = 954 ¹	Ribociclib N = 96 ¹	p-value ¹
TMB Median (IQR)	4.6 (3.4,7.1)	3.1 (1.9,5.0)	2.8 (2.0,4.1)	0.004
High TMB	14%	5.2%	12%	0.04

KEY TAKEAWAYS

- Results from our real-world dataset describe the genomic landscape in HR+ HER2- MBC that have been exposed to >6 months of CDK4/6i. This is the largest dataset, to our knowledge from patients in this setting, and included patients treated with all 3 approved CDK4/6i (palbociclib, ribociclib, and abemaciclib)
- The landscape was consistent with previously reported data in this setting^{1,2,3}, such as high prevalence of ESR1, PIK3CA, TP53 with other noteworthy alterations in the PI3K/AKT/PTEN and DNA-repair pathway associated genes.
- Relevant alterations were detected by both Tempus tissue (xT) and liquid biopsy (xF) testing, supporting a role for either assay in identifying resistance alterations.
- RB1 mutations were identified at a relatively low prevalence, with a trend towards lower frequency of RB1 mutations in patients treated with palbociclib. These data support studies evaluating the use of CDK4/6i after initial CDK4/6i, such as the MAINTAIN and PACE trials.
- Although infrequent, a small subset of patients were identified as TMB-H, which was more common among abemaciclib treated patients.
- This study was limited by a smaller sample size in the ribociclib, abemaciclib, TMB-H, and MSI-H groups. Additional analysis is recommended once more data is available from abemaciclib and ribociclib-treated patients, given the observed differences in frequency of gene mutations across CDK4/6i treated patients in this study.

Figure 3. Frequency of most common gene mutations found by Tempus xT or xF for each CDK 4/6 inhibitor. *Although the frequency of some gene mutations were significantly different amongst the groups in bivariate testing, all were non-significant after false-discovery correction