Characterizing the Genomic Landscape of POLE/POLD1-Mutated Colorectal Adenocarcinoma

Tucker Coston¹, Elizabeth Mauer², Jeremy Clifton Jones¹, Joleen M. Hubbard³, Tanios S.Bekaii-Saab⁴, Melissa Conrad Stoppler², Jason S. Starr¹ ¹Mayo Clinic, Jacksonville, FL; ²Tempus Labs, Chicago, IL; ³Mayo Clinic, Rochester, MN; ⁴Mayo Clinic Cancer Center, Scottsdale, AZ

INTRODUCTION

Pathogenic mutations in *POLE/POLD1* lead to decreased fidelity of DNA replication, resulting in a high tumor mutational burden (TMB-H) independent of deficient mismatch repair (dMMR) and high microsatellite instability (MSI-H). Studies have shown associations between this hypermutated phenotype and susceptibility to immune checkpoint inhibition.

Here, we characterized *POLE/POLD1* alterations in a large, real-world cohort of patients with colorectal cancer (CRC).

METHODS

- De-identified records of primary CRC patients profiled with the Tempus xT assay (DNA-seq of 595-648 genes at 500x) were identified from the Tempus Database.
- Immunological markers analyzed included TMB, MSI, and dMMR.
- MSI-H was determined by the assay through assessment of 239 loci. dMMR was determined by immunohistochemistry.

Cohort Overview by *POLE/POLD1* **Status**

Characteristic	Overall , N=9,136 ¹	POLE/POLD1 wild-type, n=8,919 ¹	POLE/POLD1 mutant, n=217 ¹	p-value ²
Age at Diagnosis	59 (50, 69)	59 (50, 69)	58 (49, 66)	0.15
Gender				0.7
Male	5,112 (56%)	4,987 (56%)	125 (58%)	
Female	3,993 (44%)	3,901 (44%)	92 (42%)	
Race/Ethnicity				
White	3,907 (76%)	3,823 (76%)	84 (71%)	
Black/African American	703 (14%)	680 (14%)	23 (19%)	
Asian	216 (4.2%)	212 (4.2%)	4 (3.4%)	
Hispanic/Latino	531 (18%)	515 (18%)	16 (22%)	
Stage				0.010
1-11	567 (7%)	557 (7%)	10 (5.1%)	
III-IV	7,701 (93%)	7,516 (93%)	185 (95%)	
dMMR	240 (6.8%)	236 (6.8%)	4 (5.3%)	

¹ Median (IQR); n (%)

² Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test

RESULTS

Patients

%

CONCLUSIONS

• Patients with POLE/POLD1 mutations exhibited significant differences across immunological markers and molecular co-alterations. These results have identified *POLE/POLD1*-mutated tumors as a unique genomic subpopulation.

• While POLE/POLD1-mutated CRCs have previously been associated with a hypermutated phenotype, only 22% of this cohort was considered hypermutated (defined as TMB >10).

Acknowledgments: We thank Minxuan Huang for figure generation, Chris Thompson and Mike Furgason for administrative support, and Matthew Kase for poster assembly and review.

ASCO[®] Gastrointestinal Cancers Symposium

POLE/POLD1 Co-mutations

POLE/POLD1 wild-type POLE/POLD1 12% BRCA2 wild-type POLE/POLD1 mutant POLE/POLD1 mutant 12% ATM MB-H utoff 24% RET 31% ALK 11% 80% APC 65% 25% 75% 100% 0% POLE/POLD1 % Patients Mutant

Figure 4. Differences between POLE/POLD1-mutated and wild-type tumors were observed among many co-mutated genes, including APC (80% vs 65%, P<0.001), *ALK* (31% vs 11%, *P*<0.001), *ATM* (12% vs 3.6%, P<0.001), BRCA2 (12% vs. 3.2%), and *RET* (24% vs 8.9%, *P*<0.001).