Comparative analysis of tumor immune microenvironment in primary tumors vs metastatic tissue in microsatellite stable metastatic colorectal cancer

Marwan G. Fakih¹, Jian Ye¹, ChongKai Wang¹, Arya Ashok², Elizabeth Mauer², Calvin Chao²

¹City of Hope Comprehensive Cancer Center, Duarte, CA, ²Tempus Labs, Chicago, IL

INTRODUCTION

We previously demonstrated differences in responses to checkpoint inhibitors between liver and non-liver metastases (mets) in microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Here, we investigate differences in the tumor microenvironment (TME) and mutational landscape of primary and metastatic CRC sites.

METHODS

The Tempus database was utilized to analyze de-identified cases of MSS mCRC which underwent Tempus xT testing. Tempus xT is a 648-gene NGS panel that detects somatic alterations and includes RNA sequencing. Analyzed tumors were divided into 4 categories based on the tissue sequenced: primary tumor (colon), and liver, lung, and peritoneal mets.

Demographics, genomic alterations, tumor mutational burden (TMB), PD-L1 expression, and proportions of B, T (CD4+, CD8+), NK cells, and macrophages were compared between all 4 categories. Gene expression patterns of different immune cells were used to predict their relative abundance within the tumor. Chi-squared/Fisher's exact tests or Kruskal-Wallis tests were used to assess statistical significance.

ACKNOWLEDGEMENTS

We thank Vanessa M. Nepomuceno, PhD and Alexandria Bobe PhD for poster generation and revision. Correspondence: mfakih@coh.org

SIGNIFICANCE

- and decreased macrophages.

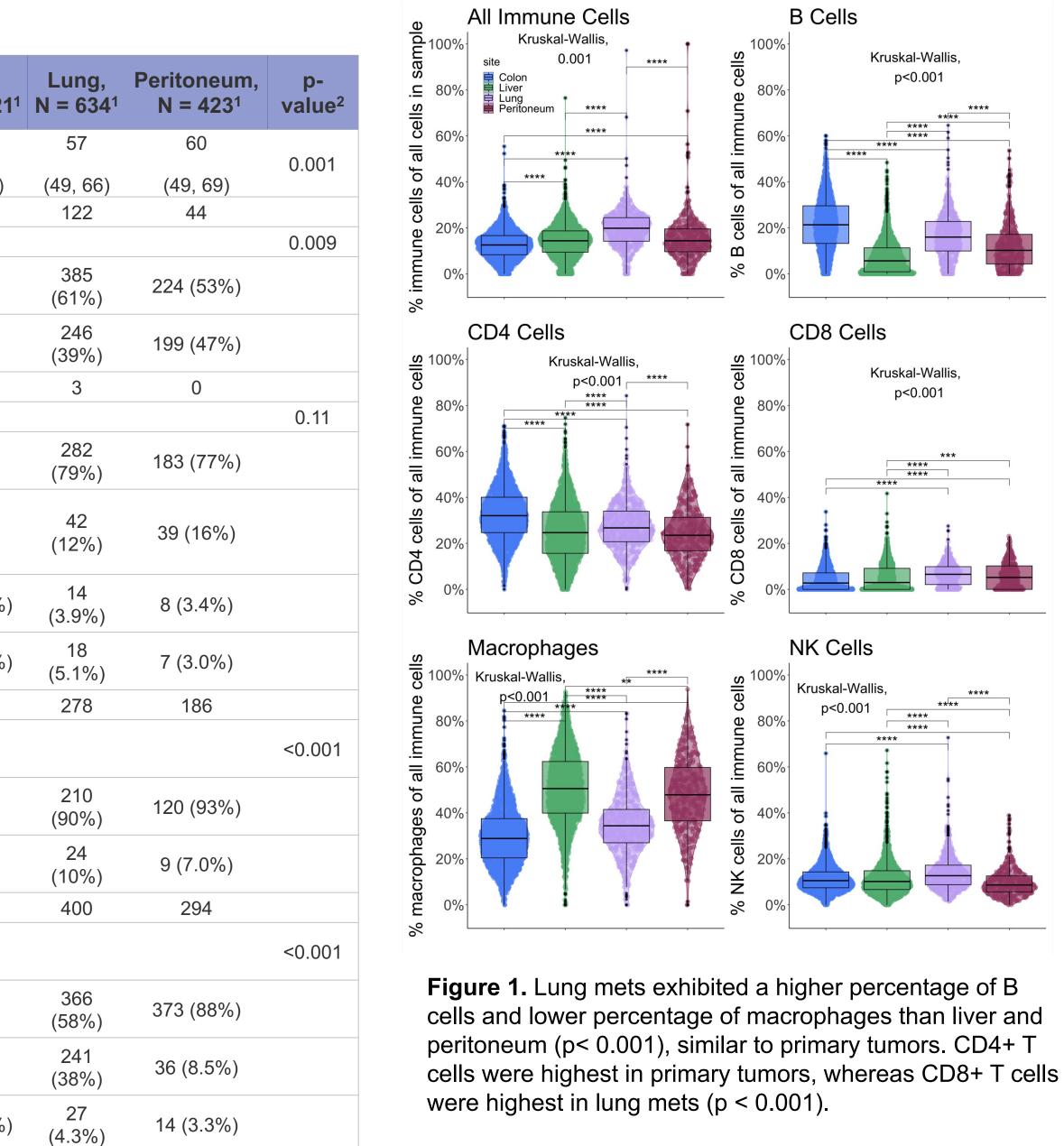

RESULTS

Table 1. Cohort Characteristics

Characteristic	Overall, N = 5,422 ¹	Colon, N = 2,044 ¹	Liver, N = 2,321 ¹
Age at	59	60	59
Diagnosis	(50, 68)	(50, 69)	(51, 68)
Unknown	476	89	221
Gender			
Male	3,116 (58%)	1,139 (56%)	1,368 (59%)
Female	2,293 (42%)	901 (44%)	947 (41%)
Unknown Race	13	4	6
White	2,370 (76%)	865 (74%)	1,040 (76%)
Black or African American	445 (14%)	169 (15%)	195 (14%)
Other	179 (5.7%)	74 (6.4%)	83 (6.1%)
Asian	127 (4.1%)	57 (4.9%)	45 (3.3%)
Unknown	2,301	879	958
Ethnicity			
Not Hispanic or Latino	1,581 (86%)	564 (82%)	687 (87%)
Hispanic or Latino	262 (14%)	124 (18%)	105 (13%)
Unknown	3,579	1,356	1,529
Primary Cancer Site			
Colon	4,327 (80%)	1,854 (91%)	1,734 (75%)
Rectum	864 (16%)	99 (4.8%)	488 (21%)
Rectosigmoid junction	231 (4.3%)	91 (4.5%)	99 (4.3%)

The tumor microenvironment of lung metastatic tumors have a more favorable immune composition than that of liver and peritoneal mets, including increased CD8+ T cells and B cells

The differences in tumor microenvironment immune profile by site of metastatic disease cannot be attributed to PD-L1 positivity rate, TMB, or tumor neoantigen burden, which vary minimally across liver, lung, and peritoneal disease. Our findings suggest that MSS mCRC to the lung may potentially be more responsive to immunotherapy.

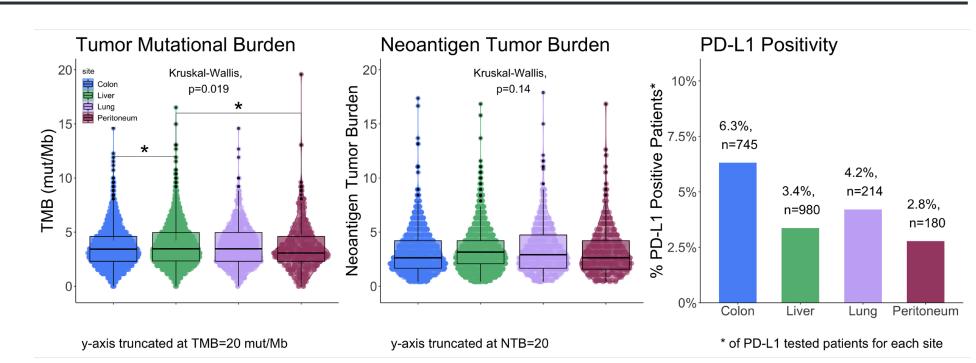
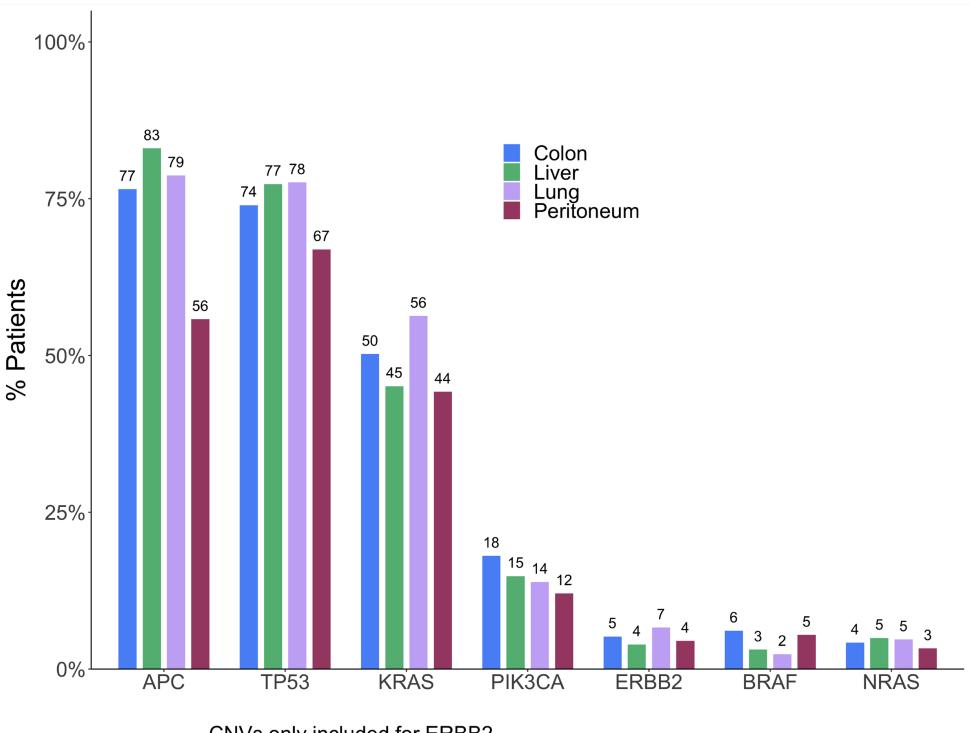



Figure 2. Median TMB and PD-L1 expressions had small differences across sites that were statistically significant

CNVs only included for ERBB2

Figure 3. Genomic profiles from 4,345 unique mCRC patients were analyzed. KRAS mutations were more frequent in lung mets.