Genomic and Immune Landscape of ERBB2/ERBB3 Alterations in Gastroesophageal Adenocarcinoma

Sarbajit Mukherjee¹, Elizabeth Mauer², Karyn Ronski², Manish A. Shah³ ¹Roswell Park Comprehensive Cancer Center, Buffalo, NY, ²Tempus Labs, Chicago, IL, ³NYP, Weill Cornell, New York, NY

Acknowledgements: We thank Minxuan Huang for the data analysis and Amrita A. Iyer, Ph.D for poster preparation.

Correspondence:

sarbajit.mukherjee@roswellpark.org

	Cohort Cl	haracteristics			
mp,	ERBB2 other , N = 71 ¹	ERBB3 CN amp , N = 17 ¹	ERBB3 other , N = 22 ¹	ERBB2/ERBB3 WT, N = 1,685 ¹	p-value ²
)	66 (59, 74)	66 (58, 72)	58 (46, 79)	64 (56, 71)	0.5
	3	1	1	81	
					0.002
	26 (37%) 0	6 (35%) 0	10 (45%) 0	391 (23%) 2	
					<0.001
	33 (46%)	5 (29%)	8 (36%)	666 (40%)	
	28 (39%)	5 (29%)	12 (55%)	565 (34%)	
	10 (14%)	7 (41%)	2 (9.1%)	454 (27%)	

Figure 1 - Comparisons of percentage patients MSI-H and percentage patients PDL1+ between ERBB2/ERBB3 groups. ERBB3 other patients demonstrated significantly increased MSI-H compared to other groups.

*y-axis truncated at 10

Figure 2 - Comparisons of TMB (Tumor Mutational Burden) and Neoantigen Tumor Burden between ERBB2/ERBB3 groups. Global significance was detected for each metric, with ERBB3 CN amp patients demonstrating the lowest median TMB and Neoantigen Tumor Burden

Figure 3 - Comparisons of immune cell compositions between *ERBB2/ERBB3* groups. Global significance we detected for both the % makeup of immune cells amongst all cells in the sample and the % makeup of CD8 T cells out of all immune cells. Notably, *ERBB3* CN amp patients (median 10% immune cells of all cells) demonstrated significantly decreased % immune cells compared to ERBB2/ERBB3 WT patients (median 15%) while ERBB3 other patients demonstrated significantly increased % immune cells (22%).

• ERBB2/ERBB3-alt are associated with significant changes in the tumor microenvironment in GEAC.

• Co-occurring genetic or immunologic alterations can be exploited to develop effective targeted or immune therapies.

Figure 4 - Comparisons of individual gene somatic alterations between ERBB2/ERBB3 groups. Somatic alterations were defined as either a pathogenic or likely pathogenic short variant, copy number loss, or copy number amplification. Genes of interest are shown; all reached significance after false-discovery adjustment aside from ALK (qvalue=0.064) and CDK12 (incalculable due to 0 cell counts).