Using Computer Vision To Resolve Proliferative Dynamics Within Therapeutic Responses in Large-Scale Screens of Patient-Derived Models

Madhavi Kannan, Brian Larsen, Chi-Sing Ho, Jagadish Venkataraman, Martin C. Stumpe, Ameen Salahudeen Tempus Labs, Chicago, IL

INTRODUCTION

METHODS

Goal: To develop a computer vision model that dynamically tracks proliferation dynamics via label-free longitudinal light microscopy Outcome:

- To report the total number of nuclei, present within a given experimental well
- Monitoring of cell division and any cytostatic effects.

SUMMARY

This tool will enable cross-comparison of different therapeutic mode of actions as well as enable cross-cancer type/indication comparison for a therapeutic candidate in development to inform early development clinical strategy

Figure 3- Correlation Comparison of test cohort across different experimental conditions

Figure 1 - Distribution of training cohort by cancer type and ground truth total nuclei count

 Table 1 - Pearson R correlation scores across 9240 wells for each
experimental condition

- performing model
- model performance.
- in training distribution.
- proliferation treatment

Acknowledgments: We thank Amrita A. Iyer, Ph.D, for poster preparation & review. **Correspondence:** publications@tempus.com

Poster Number - 5088 "I"EMPUS

otion	Pearson R Correlation
e channel as an input	0.797
nality, other 2 channels	0.809
nality, other 2 channels loescht	0.802
onality, other 2 channels	0.761
onality, other 2 channels loescht	0.771

Five experiments were conducted during training to test for bit depth and tonality effects of the raw brightfield images acquired from the confocal.

Inference on 9240 images showed a Pearson R score of 0.8 on the best-

Overall, the 16bit experiments outperform the 8bit experiments indicating that a potential loss of information deteriorates

There was no significant effect between gray and blue channel experiments.

• Our model shows higher variability in predicted total nuclei counts for wells that have a higher recorded number of mean live cells, potentially due to the imbalance

• This model can be applied to simple light microscopy to robustly measure dynamic phenotypes during drug