Characterizing the landscape of RING-type E3 ubiquitin transferase-altered (RNF43mut) colorectal cancer (CRC) and defining unique subsets with potential therapeutic vulnerabilities in microsatellite instability-high (MSI-H) CRC

¹Oklahoma University Stephenson Cancer Center, Oklahoma City, OK, ²Yale School of Medicine, New haven, CT, ³Tempus Labs, Inc., Chicago, IL, ⁴Brigham and Women's Hospital, Boston, MA, ⁵George Mason University, Fairfax, VA, ⁶The James Ohio State University Comprehensive Cancer Center, Columbus, OH, ⁷NCI-Developmental Therapeutics, Bethesda, MD, ⁸Inova/ UVA, Falls Church, VA.

INTRODUCTION

We evaluated whether genomic and transcriptomic analysis of MSI-H RNF43mut CRC defines distinct subsets with potential therapeutic vulnerabilities

METHODS

ICI-treated MSI-H CRC from the MSKCC cohort (n=74), publicly available in AACR GENIE v13 was used for overall survival estimation using the Kaplan-Meier method.

AACR GENIE v13 – Cancer registry of real-world clinico-genomic data from 19 international centers

Note - *RNF43mut* were defined as pathogenic/likely pathogenic somatic mutations

*Tempus xT assay - DNA-seq of 648 genes at 500x coverage, full transcriptome RNA-seq

Acknowledgments: We thank Binyam Yilma and Amrita A. Iyer, for poster preparation & review **Correspondence:** AbdulRafeh-Naqash@ouhsc.edu

SUMMARY

RESULTS

Important Notes:

43%, p<0.001)

these sidedness (left, right, transverse)

(4.2% vs. 13.3%), and MMR-D/MSI-H (3.1% vs. 619%)

Abdul Rafeh Nagash¹, Amin Nassar², Lisa Macera³, Elizabeth Mauer³, Justin Guinney³, Calvin Chao³, Elio Adlib⁴, Emanuel Petricoin⁵, Arjun Mittra⁶, Naoko Takebe⁷, Timothy Cannon⁸

RNF43mut are common in MSI-H CRC and associated with potentially actionable genomic and transcriptomic signatures. Functional characterization using proteomics and transcriptomics to better understand the interplay between the WNT signaling and therapeutically relevant pathways (PI3K/AKT, BRAF/MAPK, IGF1R, cetuximab benefit) across MSI-H RNF43mut CRC is ongoing.

QHealth Stephenson Cancer Center

UVA MEDICINE INOVA CAMPUS

Differential expression of enrichment scores was performed.