

THE UNIVERSITY OF CHICAGO

Rahul Krishnan¹, Agnes Bilecz¹, Lisa Schweizer¹, Aasa Shimizu¹, Ellen Jaeger², Jen Godden², Melissa C. Stoppler², Ernst Lengyel¹ ¹Gynecologic Oncology Section, Division of Obstetrics & Gynecology, University of Chicago, Chicago, IL, // ²Tempus Labs, Inc., Chicago, IL

INTRODUCTION

- Low-grade serous ovarian cancer (LGSC) is a rare subtype of epithelial ovarian cancer, accounting for 5% of all cases.
- These cancers are marked by resistance to cytotoxic chemotherapy and frequently exhibit MAP kinase (MAPK) pathway mutations.
- LGSC is thought to arise either *de-novo*, or develop from its putative precursor, serous borderline tumor (SBT).
- We sought to characterize the genomic and immune landscape of LGSC and SBT.

METHODS

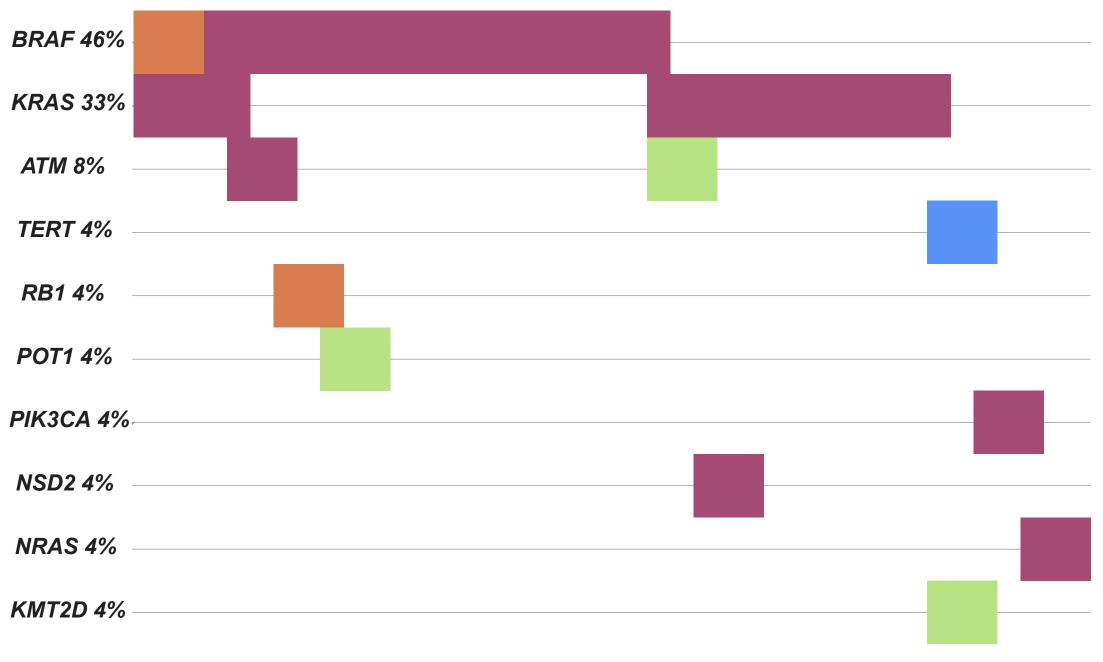
- De-identified records of 6,605 patients with ovarian cancer were retrospectively analyzed.
- Selection criteria included a histological diagnosis of low-grade serous ovarian cancer (LGSC) and serous borderline ovarian tumor (SBT).
- Tumor sequencing performed via the Tempus xT assay, a targeted, tumor-normal-matched DNA panel that detects single-nucleotide variants and insertions and/or deletions in 648 genes with high sensitivity and specificity.
- Immunological markers including tumor mutational burden (TMB), microsatellite instability (MSI), and PD-L1 status were also assessed in this cohort.
- The prevalence of individual gene alterations were described and compared by Chisquared/Fisher's Exact tests and adjusted for multiple testing using false discovery rate methods.

ACKNOWLEDGMENTS

We thank Vanessa M. Nepomuceno, Ph.D. from Tempus Scientific Communications and and Nabil Husni, MPH from the Tempus Data Science department for visualization and poster review.

Correspondence: Rahul Krishnan: rahul.krishnan@uchicagomedicine.org

Characterizing the genomic and immune landscape of serous borderline tumors and low-grade serous ovarian cancer


SUMMARY

- kinase pathway mutations.
- mutations may differentially impact propensity for tumor behavior and malignant potential.


RESULTS

Table 1. Cohort Demographics					Table 2. Co-alterations of interest				Figure 1
	Overall N = 132	LGSC N = 108	SBT N = 24	p-value ¹	Gene	LGSC N = 108	SBT N = 24	p-value ¹ q-valu	
a at Diagnasia				0.7	BRAF	9 (8.3%)	11 (46%)	<0.001 0.001	
je at Diagnosis			// ()	0.7	KRAS	26 (24%)	8 (33%)	0.3 >0.9	MUTYI
Median (IQR)	55 (40, 65)	55 (42, 65)	57 (40, 64)		NRAS	12 (11%)	1 (4.2%)	0.5 >0.9	МАРЗК
Range	19, 87	21, 87	19, 73		ATM	1 (0.9%)	2 (8.3%)	0.085 >0.9	MAP2K
Unknown	3	2	1		NF1	8 (7.4%)	0 (0%)	0.3 >0.9	LZTR
je at Diagnosis				0.7	TP53	5 (4.6%)	0 (0%)	0.6 >0.9	
<=60	77 (60%)	64 (60%)	13 (57%)		BAP1 CREBBP	1 (0.9%)	1 (4.2%)	0.3 >0.9	ESR
					PIK3CA	4 (3.7%) 1 (0.9%)	1 (4.2%) 1 (4.2%)	0.3 >0.9	EIF1A
>60	52 (40%)	42 (40%)	10 (43%)		RB1	1 (0.9%)	1 (4.2%)	0.3 >0.9	CDKN2
Unknown	3	2	1		ERBB2	3 (2.8%)	0 (0%)	>0.9 >0.9	ATR
ICE				0.14	KDM5C	2 (1.9%)	0 (0%)	>0.9 >0.9	ASXL
White	71 (84%)	61 (86%)	10 (71%)		ASXL1	1 (0.9%)	0 (0%)	>0.9 >0.9	
Black or African American	7 (8.2%)	5 (7.0%)	2 (14%)		ATRX	1 (0.9%)	0 (0%)	>0.9 >0.9	KDM5
Other	6 (7.1%)	5 (7.0%)	1 (7.1%)		CDKN2A	1 (0.9%)	0 (0%)	>0.9 >0.9	ERBB
					EIF1AX	1 (0.9%)	0 (0%)	>0.9 >0.9	RB
Asian or Pacific Islander	1 (1.2%)	0 (0%)	1 (7.1%)		ESR1	1 (0.9%)	0 (0%)	>0.9 >0.9	PIK3C
Unknown	47	37	10		LZTR1	1 (0.9%)	0 (0%)	>0.9 >0.9	CREBB
oxon rank sum test; Pearson's Chi-squared test	Fisher's exact test				MAP2K1	1 (0.9%)	0 (0%)	>0.9 >0.9	
Figure 2. Most Frequently Altered SNVs					MAP3K1	1 (0.9%)	0 (0%)	>0.9 >0.9	BAP
					MUTYH	1 (0.9%)	0 (0%)	>0.9 >0.9	TP5
(A) Serous borderline tumor					NF2	1 (0.9%)	0 (0%)	>0.9 >0.9	NF
•					SMARCA4	1 (0.9%)		>0.9 >0.9	ATI
						n s Uni-squared lest; 2 faise	discovery rate correction for mu		An NRA:

(B) Low-grade serous cancer

In our cohort, SBT and LGSC share a similar microsatellite stable status, low PD-L1 expression and a high percentage of MAP

• The higher incidence of BRAF mutations in SBT and increased frequency of NRAS mutations in LGSC suggest that MAPK pathway gene

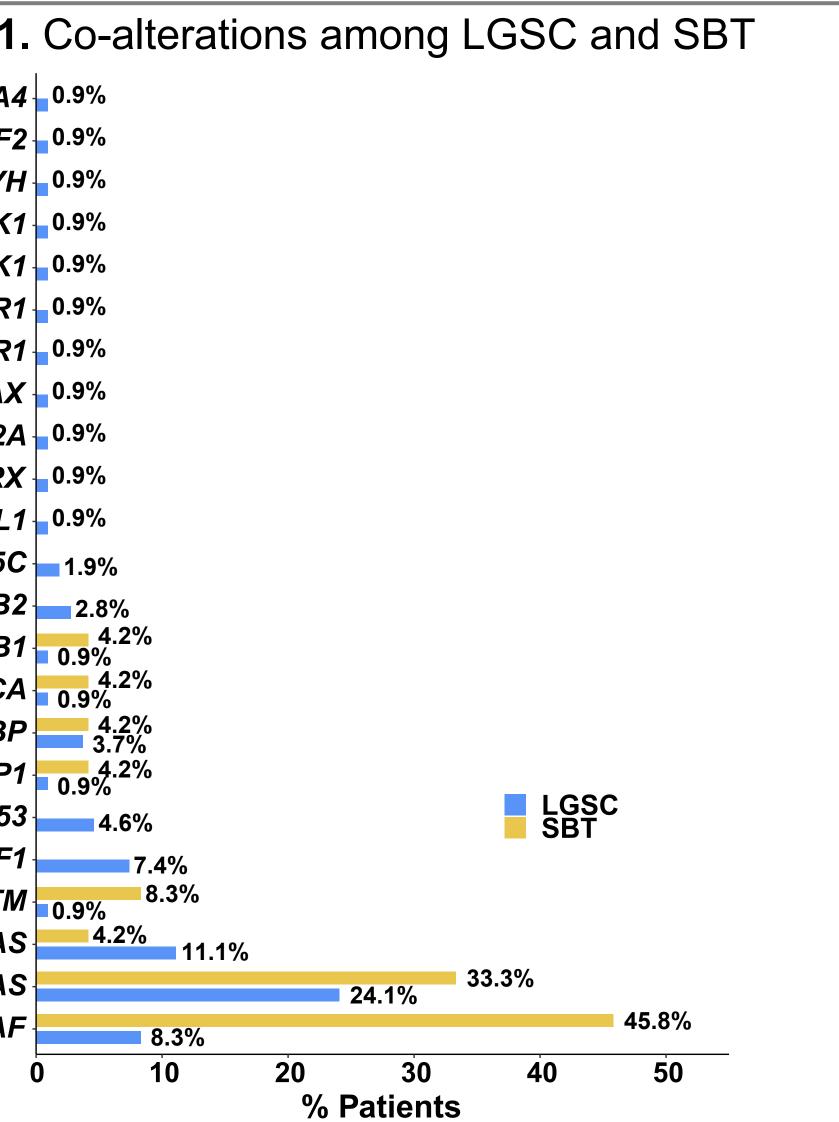
KRAS BRAF

Figure 2. Oncoplot summarizing genes with the most frequently altered SNVs among serous borderline tumors (A) and low-grade serous cancer (B). ATM (8.3%) was the most common non-MAPK altered gene in SBT, whereas CREBBP (3.7%) and HNF1B (3.7%) alterations were the most frequently altered non-MAPK genes in LGSC.

Disruptive Inframe Insertion Frameshift Variant Missense Variant Multihit Stop Gained Upstream Gene Variant

Table 2. Approximately 51% (n=55) of LGSC patients had MAPK mutated tumors whereas approximately 75% (n=18) of serous borderline tumors had MAPK pathway related

gene mutations.


Table 3. Immunological Marker Profile in LGSC and SBT

	Overall N = 132	LGSC N = 108	SBT N = 24	p-value ¹
TMB (mut/Mb)				>0.9
Median (IQR)	1.17 (0.42, 2.34)	1.17 (0.39, 2.50)	1.17 (0.79, 1.67)	
Range	0.00, 6.67	0.00, 6.67	0.37, 3.43	
MSI				>0.9
Low/Stable	131 (100%)	107 (100%)	24 (100%)	
High	0 (0%)	0 (0%)	0 (0%)	
Unknown	1	1	0	
MMR Deficiency based on internal IHC				
Not Deficient	65 (100%)	58 (100%)	7 (100%)	
Unknown	67	50	17	
PDL1 result from internal IHC				0.4
Negative	63 (95%)	54 (96%)	9 (90%)	
Positive	3 (4.5%)	2 (3.6%)	1 (10%)	
Unknown	66	52	14	

Table 3. LGSC and SBT tumors exhibited low overall
 percentage of tumor-infiltrating immune cells (TIIC). All LGSC and SBT samples were microsatellite-stable and tumor mutation burden (TMB) was similar for all LGSC and SBT tumors. Two of 56 LGSC cases and 1 of 10 SBT cases with PDL-1 testing were PDL-1 positive.

"I'EMPUS

