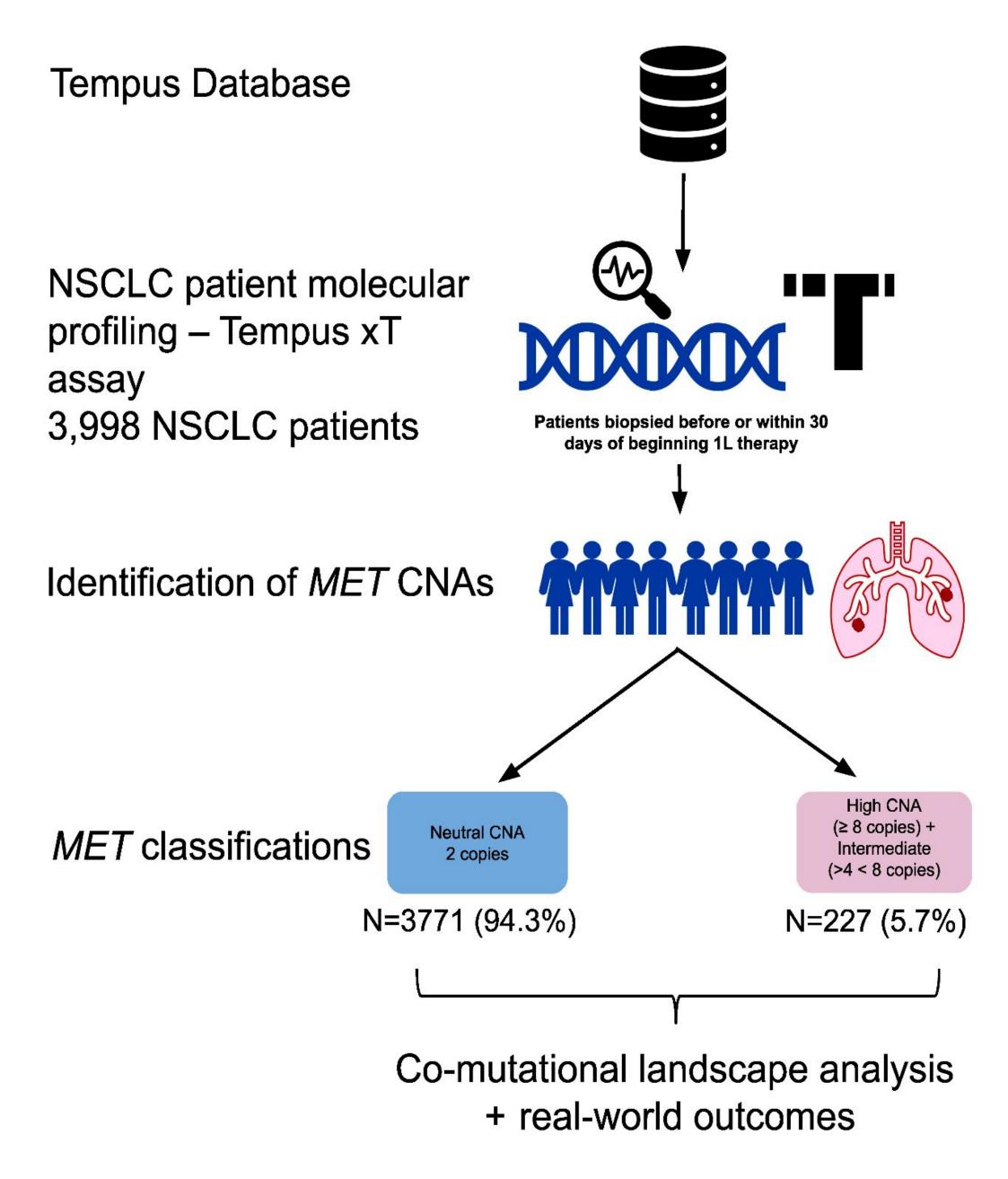
Genomic characterization of sporadic MET-amplified non-small cell lung cancer (NSCLC) and association with real-world outcomes


Ryan D. Gentzler¹, Nitya Sharma², Akash Mitra², Rotem Ben-Shachar², Justin Guinney², Halla Nimeiri², Wade lams³, Charu Aggarwal⁴, and Jyoti Patel⁴ ¹University of Virginia Health, Charlottesville, VA | ²Tempus Labs, Inc., Chicago, IL | ³Division of Hematology/Oncology, Vanderbilt University, Nashville, TN ⁴University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA ⁵Feinberg School of Medicine, Northwestern University, Chicago, IL **Correspondence:** Dr. Ryan D. Gentzler, RG2UC@virginia.edu

INTRODUCTION

MET copy-number amplifications (CNAs) are implicated as a resistance mechanism in NSCLC patients treated with EGFR-targeted tyrosine kinase (TKI) inhibitors and are associated with poor outcomes. However, data are limited on sporadic MET CNAs — defined as existing genomic alterations preceding first-line (1L) TKI therapy — and their associations with known predictive immune biomarkers and clinical outcomes. This is the first real-world dataset to assess the prevalence of sporadic MET amplifications in NSCLC and their association with real-world clinical outcomes.

METHODS

We analyzed a de-identified, multimodal dataset of 3,998 NSCLC patients biopsied prior to or within 30 days of the start of 1L therapy. Tempus xT is a targeted DNA panel that detects single-nucleotide variants (SNVs), insertions and/or deletions (indels), and copy number variants. MET CNAs were identified as follows: \geq 4 copies <8 copies (CN-intermediate); ≥8 copies (CN-high). The combined high + intermediate cohort was compared to patients that were copy-number neutral (CN-N, 2 copies). Patients with *MET* exon 14-skipping mutations were excluded.

SUMMARY

• High (H; \geq 8 copies) + intermediate (I; \geq 4 and < 8 copies) sporadic *MET* CNAs represent a unique genomic subset (5.7%) TKI-naïve NSCLC patients) with distinct biology: 18% co-occur with EGFR mutations and 12% co-occur with KRAS G12C • Patients with sporadic H+I MET CNAs had higher PD-L1 and high TMB, both positive predictive biomarkers of immune checkpoint inhibitor (ICI) therapy and trend toward better rwOS when treated with 1L ICI-based therapy • Our real-world analysis suggests that combination therapy with ICI should be considered for future clinical trials evaluating this EGFR wild-type subset of sporadic MET CNA

RESULTS

Cohort Demographics and Clinical Characteristics

Patient Characteristic	High + Intermediate N = 227 ¹	Neutral N = 3771 ¹	p-value ²
Gender			0.3
Female	100 (44%)	1,797 (48%)	
Male	127 (56%)	1,974 (52%)	
Age at Diagnosis	67 (60, 73)	68 (61, 75)	
Unknown	3	22	
Race			0.7
White	145 (77%)	2,357 (79%)	
Black or African American	23 (12%)	329 (11%)	
Other	10 (5.3%)	141 (4.7%)	
Asian	8 (4.3%)	104 (3.5%)	
Native Hawaiian or other Pacific Islander	0 (0%)	4 (0.1%)	
Not stated	1 (0.5%)	10 (0.3%)	
American Indian or Alaska Native	1 (0.5%)	6 (0.2%)	
Unknown	39	820	
Diagnosis			
Lung adenocarcinoma	185 (84%)	2,575 (71%)	<0.001
Lung squamous cell carcinoma	35 (16%)	1,048 (29%)	
Unknown	7	148	
¹ n (%); Median (IQR)			
² Pearson's Chi-squared test; Wilcoxon rank sum	test; Fisher's exact test	t	

Table 1. Demographic information for all patients included in this study

First-line (1L) treatment status

	All Patients (n)	<i>MET</i> High + Intermediate (n)	MET Neutral (n)
Full cohort	3998	227	3771
Treated with ICI +/- chemo	1672	94	1578

Table 2. Patient treatment status was assessed before or within 30
 days of starting 1L therapy.

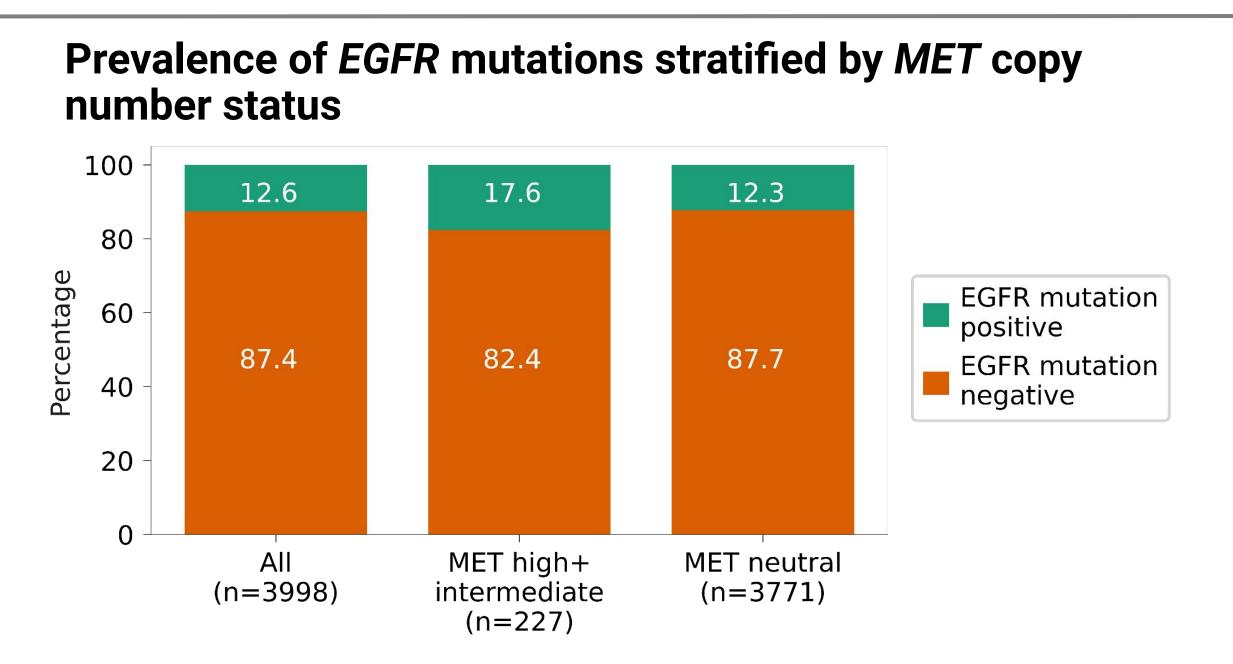


Figure 2. The majority of NSCLC patients in this data set do not harbor EGFR mutations. However, patients with high and intermediate *MET* CNAs are more likely to harbor *EGFR* mutations (n= 40/227, Fisher's exact p=0.02). Further results are restricted to *EGFR* wild-type samples.

Immunotherapy-related biomarkers and association with **MET CNAs in EGFR wild-type NSCLC patients**

Biomarker	<i>MET</i> High + Intermediate (N=187)	<i>MET</i> neutral (N=3307)	p-value
KRAS G12C+	20 (11%)	400 (12%)	0.64
STK11+	6 (3.2%)	432 (13%)	1.12E-05
KEAP1+	27 (14%)	275(8.3%)	0.007
TMB-H	40 (21%)	446 (13%)	0.004
PD-L1 Positive (≥50% TPS)	45 (45%*)	551 (26%*)	6.62E-05
*PD-L1 IHC was availab	le for a subset of EGFR-mutation	negative patients: n=100 MET	high+intermediate

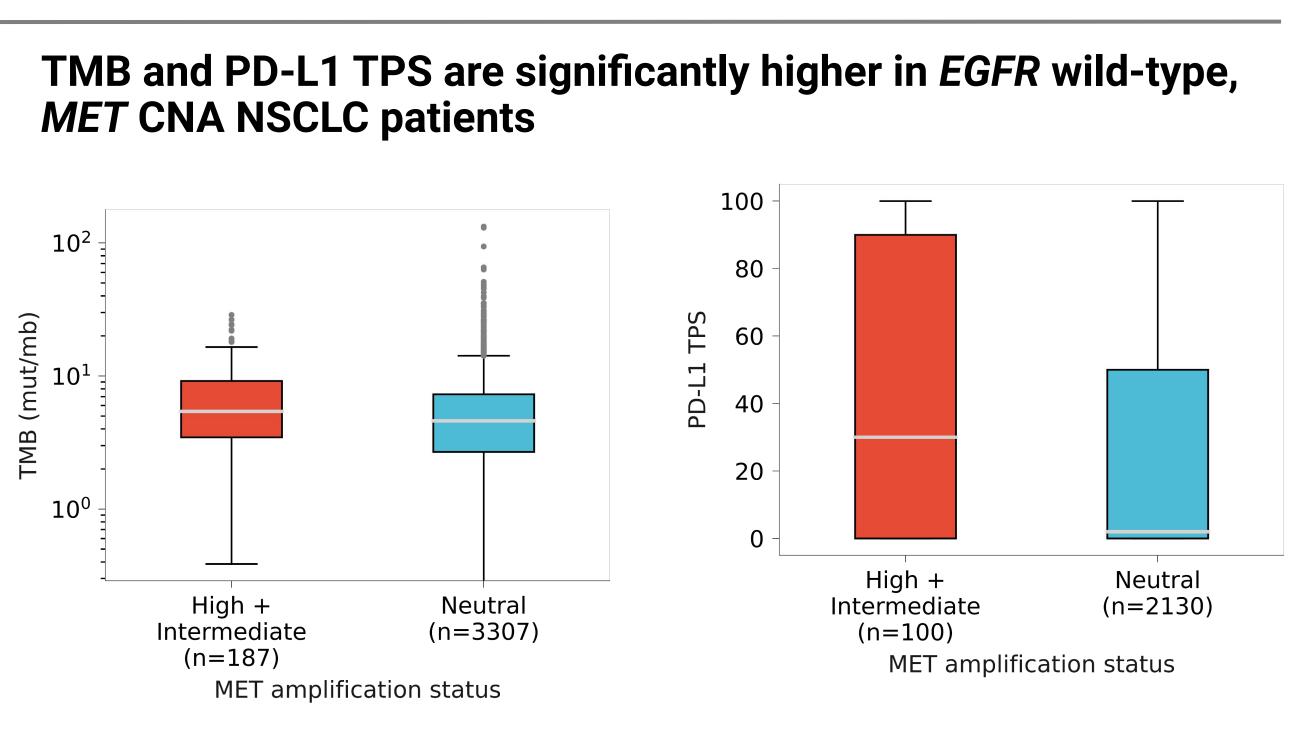
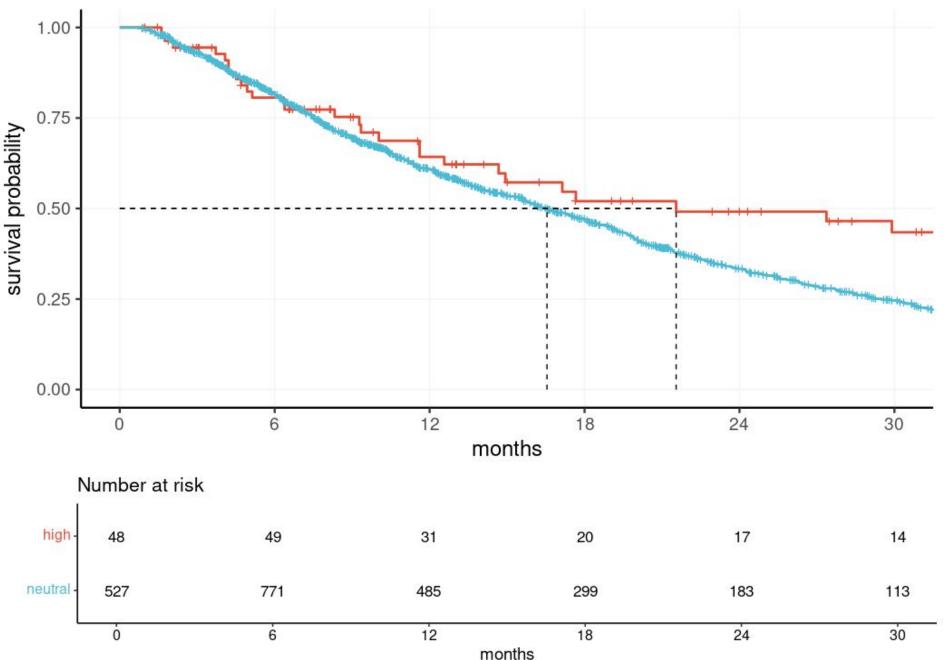

D-LITING was available for a subset of EGER-mutation negative patients. It= 100 MET high+intermediate and n=2130 MET neutral

Table 3. Among *EGFR* wild-type patients, immunotherapy-related biomarkers are more prevalent in patients harboring MET CNAs, including PD-L1 positivity and TMB-High. STK11 and KEAP1 mutational prevalence similarly differ according to MET amplification status.



Publication #: 203P

Figure 3. Tumor mutational burden (TMB, mut/MB; left) and PD-L1 Tumor Proportion Score (TPS; right) for *EGFR*-mutation negative samples, stratified according to sample MET CNA status. Table 3 shows binary classifications for TMB-High and PD-L1 positivity, including statistics.

Figure 4. *EGFR*- NSCLC patients with sporadic H+I *MET* CNAs (median rwOS:21.5 months) trended towards improved survival compared to EGFR wild-type, MET neutral patients (median rwOS:16.5 months) on 1L ICI therapy (HR=0.81. p=0.22 [95% CI: 0.57-1.14]).

Acknowledgements: We thank Dana DeSantis and Adam Hockenberry from the Tempus Scientific Communications Team for visualization and poster review.