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INTRODUCTION SUMMARY

Tumor-infiltrating  lymphocytes (TIL) are a
biomarker for response to immune checkpoint
inhibitor (ICI) therapy. However, visually identifying
TILs from hematoxylin and eosin (H&E) stained
whole-slide images (WSIs) is expensive and
time-consuming. Further, a lack of consensus on
TIL scoring criteria can result in high levels of

e Our deep learning model performed as well as a held-out pathologist at separating Inflamed vs. Non-Inflamed samples.
o Model Mean F1 score: 84.3% (95% CI 81.2% - 87.4%)
o Held-Out Pathologist Mean F1 score: 86.7% (95% Cl 78.5% - 95.0%)

e Inflamed vs. Non-Inflamed status has been shown to correlate with overall survival and progression free survival in response to
immune checkpoint inhibitors.’
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Figure 3. Select examples that highlight room for further model improvement. Left: Example of a slide for which the model predicted
Inflamed and all four pathologists assessed Non-Inflamed. The model may have mistaken background lung epithelial cells and
stromal cells for immune cells. Right: Example of a slide for which the model predicted Non-Inflamed and all four pathologists
assessed Inflamed. The model may have mistaken immune cells for epithelial cells and stromal cells.
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