Breast cancer intrinsic subtypes predict outcomes in primary and metastatic samples Talal Ahmed, PhD¹, Mark Carty, PhD¹, Kaveri Nadhamuni, MS¹, Raphael Pelossof, PhD¹

INTRODUCTION

- We retrospectively analyzed 7,021 de-identified breast cancer patients with known hormone receptor (HR) or HER2 status and a matched RNASeq sample.
- The prognostic and predictive value of the PAM50 intrinsic subtypes, namely Luminal A, Luminal B, Her2, and Basal-like subtypes, is well-studied in primary as well as metastatic breast cancer settings.
- Prosigna has emerged as a rapid PAM50 subtype predictor based on the NanoString nCounter assay.
- However, assay reproducibility across various RNASeq or qRT-PCR platforms can be challenging, especially when applying the predictor on metastatic breast cancer tumors.
- Here, we create an in-house subtype predictor that works on RNA sequencing data.
- We evaluate real-world outcomes for our intrinsic subtype predictions across various immunohistochemical (IHC) labels and metastatic tumor sites.

METHODS

- The subtype predictor was trained on a cohort of 2,497 breast cancer patients using the PAM50 genes, profiled using Nanostring RNA nCounter assay (GSE148426)¹. The reference dataset contained samples collected from various sites including breast (n=2440), liver (n=936), lymph node (n=577), lung (n=540), and bone (n=304).
- For subtype classification, we first batch-corrected the external dataset to the Tempus RNA-sea reference dataset using SpinAdapt², then trained a Support-Vector Classifier (SVC) on the corrected data. A 10-fold CV experiment was performed on the corrected dataset to analytically validate the intrinsic subtype predictions.
- The concordance between HR/HER2 status and PAM50 prediction was analyzed, and these patients were excluded from training.
- Real-world overall survival (rwOS) was evaluated from the time of first diagnosis. The outcomes across PAM50 subtypes were assessed according to tumor collection site and HR/HER2 IHC status.

predictions

labels.

¹Tempus Labs, Inc., Chicago, IL

KEY TAKEAWAYS

• Analyzing 7,021 patient samples finds a highly accurate PAM50 breast subtype predictor F1-score of 0.97 in a 10-fold CV experiment. • The prognostic value of the basal subtype was significant for breast cancer patients across various sites of metastasis including lymph node, liver, lung, and bones.

RESULTS

- For patients in each of the HR+/HER2- and triple negative IHC groups, the PAM50 molecular subtypes provided an additional level of prognostic detail with statistical significance.

)	LumA
)	LumF
	Her2
	Basal

━┿┓	
-	
·	

Number
LumA
LumB

Her2

Basal

172	141	99	80	55				
110	67	31	18	9				
Lymph node								

45

64

203 126

33 22

74 36 25

umA	2285	1677	1284	982	736
umB	817	645	508	372	282
ler2	173	142	100	70	42
Basal	378	217	126	74	50

- site of metastasis:

preparation and review.

• Basal rwOS was significantly shorter than non-basal patients (n=5,845, p< 2e-90) across all tumor sites.

The predicted PAM50 basal rwOS remained significantly shorter than nonbasal patients even when stratified by

• breast (n=2,405; p< 1e-27) • lymph node (n=577, p< 1e-7) liver (n=936; p<1e-25) ○ lung (n=540, p< 1e-13) ○ bone (n=304, p< 1e-3).</p> • Among both HR+/HER2- (n=3,653) and HR-/HER2- (n=1,664) IHC cohorts with available outcomes data, the predicted PAM50 basal subtype could further stratify each of these IHC

populations with basal-subtype showing significantly worse prognosis than the non-basal subtype (p < 1e-27and p < 1e-7, respectively).

REFERENCES

Wallden, Brett, et al. "Development and verification of the PAM50-based Prosigna breast cancer gene signature assay." BMC medical genomics (2015). 2. Ahmed, Talal, et al. "Privacy preserving validation for multiomic prediction models." Briefings in Bioinformatics (2022). Acknowledgements: We thank Vanessa M. Nepomuceno, Ph.D. for assistance with poster Correspondence: talal.ahmed@tempus.com This presentation is the intellectual property of the author/presenter. Contact them at

talal.ahmed@tempus.com here for permission to reprint and/or distribute.