Real-World Clinical Genomics Study of HR+/HER2- Metastatic Breast Cancers Treated by CDK4/6i plus Endocrine Therapies Revealed a Drug Resistant Tumor Segment Characterized by ER Independence

INTRODUCTION

plus endocrine CDK4/6 (CDK4/6i) the standard-of-care for therapies are receptor-positive/human epidermal hormone 2-negative metastatic breast cancer receptor (HR+/HER2-MBC). However, drug resistance remains a major unmet need. Investigations of drug resistance mechanisms has been hampered by a dearth of tumor molecular profiling data from the post-progression setting. To address this challenge, we have conducted a real-world clinical genomics study to better understand the molecular mechanism of CDK4/6i resistance and to stratify patients based on integrated multi-omics profiles.

METHODS

We retrospectively analyzed a multi-omics dataset of 400 HR+/HER2- MBC patients who received ET developed progressive and CDK4/6 the de-identified Tempus disease trom database. Pre-treatment and post-progression biopsies were taken ≤ 1 year prior to starting the CDK4/6i treatment or following PD respectively. Tempus xT next-generation sequencing (DNA-seq of 648 genes) and RNA sequencing assays were performed on 427 tumor FFPE samples, including 200 pre-treatment, 227 post-progression and 27 longitudinal pairs.

Figure 1. Overview of Study Design & Analysis

Progression Free Survival. GSVA: Gene Set Variation Analysis. NMF: Nonnegative Matrix Factorization. TME: tumor microenvironment. SigMA: Signature Multivariate Analysis.

San Antonio Breast Cancer Symposium December 5-9, 2023

	-0.5	-0.25
MTORC1 signaling		
Glycolysis		
Unfolded protein response		
PI3K AKT MTOR signaling		
Cholesterol homeostasis		
UV response up		
MYC targets V1		
Peroxisome		
G2M checkpoint		
Protein secretion		
MYC targets V2		
Oxidative phosphorylation		
E2F targets		

(a) CCNE1 up-regulated in Post vs. Pre. biopsies (b) Higher CCNE1 expression (median-split) significantly associated with shorter PFS. (c) Volcano plot with molecular features significantly changed in Pre vs Post. % Change: percentage change in feature value in Post vs. Pre. The vertical dashed lines indicate the cutoffs > 10% or < -10%. The horizontal dashed line indicates the p-value < 0.05cutoff. Features are colored based on statistical significance, with red indicating that both cutoffs are met and blue and green indicating that only one of the cutoffs are met. -Log₁₀P: statistical significance. NS: not significant. (d, e) Forest plot showing the molecular features (d) and Hallmark gene signatures (e) with significant PFS association.

CPH model estimate: log(HR)

0.5

0.75

RESULTS

specific alteration type issense 🔲 frameshift 🔳 stop_gained/stop_lost/start_lost 📙 splice 📕 CN_Amp 📕 fusion 📕 mix

(a) Pre vs. Post comparison identified 7 genes with significant changes in genomic alteration frequencies (fisher exact test, p<0.05), with ESR1 and RB1 having the most significant increases. Colors represent different types of genomic alterations. (b) ESR1 and RB1 are also among the top genes with frequent PD-specific mutations among patients with paired Pre/Post samples. The number and percentage of the patients with PD-specific mutations for each gene were shown at the right side.

Figure 4. Integrative clustering analysis identified molecularly distinct subgroups IC1-4

Integrative clustering analysis using iClusterPlus¹ on selected multi-omics features representing different aspects of breast cancer biology identified four clusters, IC1-4. These features include gene expressions, hallmark signatures (GSVA), PAM50 subtype scores, ESTIMATE scores for tumor microenvironment, projection to Paloma3 NMF factors², gene-level genomic alteration status and other tumor characteristics. icluster: integrative cluster. Cyt score: cytolytic activity score. TMB: tumor mutation burden. Treatment status: Pre/Post.

¹Zhengyan Kan, ¹Ji Wen, ²Jen Webster, ³Vinicius ³ r i ³ /ł e i ł ki r eng Jasmine Mu, ¹Paul Rejto, ¹Jadwiga Bienkowska

- Mo, Q., et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A 110, 4245-4250 (2013).
- 2. Freeman-Cook, K., et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 39, 1404-1421 e1411 (2021).

This presentation is the intellectual property of the author/presenter. Contact them at <u>zhengyan.kan@pfizer.com</u> for permission to reprint and/or distribute.

• Machine learning analysis suggested the therapeutic strategy of targeting CDK2 against the ER dependent tumor segment, echoing an earlier study².