Describing the genomic landscape of bladder cancer histologic subtypes

Rafee Talukder¹, Rachel Berg², Minxuan Huang², Vanessa M. Nepomuceno², Melissa C. Stoppler², Dimitrios Makrakis³, A. Edward Yen¹, Martha Mims¹, Seth Lerner⁴, Solomon Woldu⁵, Yair Lotan⁵, Evan Y. Yu⁶, Ali Raza Khaki⁷, Jeanny B. Aragon-Ching⁸, Petros Grivas⁶ ¹Department of Medicine, Baylor College of Medicine, Houston, TX, ²Tempus Labs, Chicago, IL, ³Department of Urology, Baylor College of Medicine, Houston, TX, ⁵Department of Urology, UT Southwestern, Dallas, TX, ⁶Division of Hematology/Oncology, Dallas, TX, ⁶Division of Hematology/Oncology, UT Southwestern, Dallas, TX, ⁶Division of Hematology/Oncology, UT Southwestern, Dallas, TX, ⁶Division of Hematology/Oncology, Dallas, TX, ⁶Division of Hematology/Oncology, Dallas, Dallas, TX, ⁶Division of Hematology/Oncology, Dallas, University of Washington; Fred Hutchinson Cancer Center, Seattle, WA, 7Department of Medicine, Stanford University, Palo Alto, CA, 8Inova Schar Cancer Institute, Fairfax, VA

INTRODUCTION

- Histologic subtypes of bladder cancer are associated with poor prognosis and therapy resistance
- Understanding underlining biology can help identify biomarkers and therapeutic targets
- In this study, we aim to describe the genomic alteration (GA) landscape of pure urothelial (UC) & histologic plasmacytoid subtypes: (PC), micropapillary (MP), sarcomatoid (SA), small cell/neuroendocrine (SC), squamous cell differentiation (SQ), adenocarcinoma (AD).

METHODS

Genomic and immunotherapy putative biomarkers, including mutations, fusions, copy number variants, tumor mutation burden (TMB-high defined as ≥10 mutations/Mb) and MSI status were determined for each subtype and compared using Fisher's Exact and Kruskal-Wallis tests.

*Briefly, Tempus xT is a targeted, tumor/normal-matched DNA panel that detects single-nucleotide variants (SNVs), insertions and/or deletions (indels), and copy number variants (CNVs) in 648 genes, as well as chromosomal rearrangements in 22 genes with high sensitivity and specificity

Correspondence: Rafee.Talukder@bcm.edu

Characteristic	Overall N = 2,165 ¹	UC N = 1,738 ¹	PC N = 25 ¹	MP N = 381	s N =
Age at Diagnosis					
Median (IQR)	70 (62, 77)	70 (62, 77)	65 (60, 74)	65 (60, 74)	71 7
Range	26, 90	26, 90	45, 89	36, 89	45
Unknown	17	11	2	1	
Gender					
Male	1,578 (73%) 587	1,303 (75%) 435	18 (72%)	27 (71%) 11	2 (68
Female	(27%)	(25%)	7 (28%)	(29%)	(32
Race/Ethnicity					
White	1,171 (84%)	942 (84%)	11 (85%)	22 (85%)	(9)
Black or African American	112 (8.0%)	83 (7.4%)	2 (15%)	1 (3.8%)	1 (3
Other	76 (5.4%)	61 (5.5%)	0 (0%)	3 (12%)	0 (
Asian	40 (2.9%)	33 (2.9%)	0 (0%)	0 (0%)	0 (
Hispanic or Latino	48 (6.3%)	39 (6.4%)	0 (0%)	0 (0%)	0 (
Smoker status					
Current/former smoker	1,222 (71%)	1,001 (73%)	15 (68%)	22 (71%)	2 (8)
Never smoker	503 (29%)	373 (27%)	7 (32%)	9 (29%)	6 (2
Unknown	440	364	3	7	

¹ n (%), ²Kruskal-Wallis rank sum test; Fisher's Exact Test for Count Data

Table 1. Among 2165 identified pts, 1738 (80%) had UC (84% pure and 16% mixed histology), Table shows genomic alterations per histologic subtype. Of 1197 pts with staging information available, 71% tumors were stage IV.

SIGNIFICANCE

Distinct genomic alteration patterns were found among different histologic subtypes of bladder cancer & conventional UC.

Assessing the genomic landscape of bladder cancer can help identify potential 'actionable' targets & biomarkers, and better inform clinical trial designs, therapies & eligibility, including "basket" or "umbrella" trials.

MP, SA, SQ subtypes have higher prevalences (>10%) of FGFR2/3 alterations.

RESULTS

