Genetic Ancestry Associations with Prostate Adenocarcinoma Mutational **Profiles: New Insights from a Diverse 5,959-Patient Real-World Cohort**

Brooke Rhead¹, Yannick Pouliot¹, Francisco M. De La Vega¹, David W. Craig², John Carpten² ¹Tempus AI, Inc., Chicago, IL; ²City of Hope, Duarte, CA

INTRODUCTION

In prostate cancer, Black men face higher incidence rates, more advanced diagnoses and worse outcomes than White men. These disparities partially stem from environmental, socioeconomic, and healthcare access factors. Recent data highlight racial differences in prostate cancer molecular profiles, with tumors from Black men showing increased SPOP mutations, decreased PIK3CA mutations, amplified androgen receptor signaling, and increased inflammatory pathway activations. Thus, somatic mutation patterns may also contribute to these disparities.

We sought to identify associations of mutational profiles in prostate adenocarcinoma (PRAD) with genetic ancestry instead of race and ethnicity categories.

METHODS

Molecular profiling with 5,959 patients with Tempus xT 648-gene NGS PRAD test MM

654 ancestry-informative markers used to estimate genetic ancestry by calculating similarity to reference populations for five regions: Africa (AFR), Americas (AMR), East Asia (EAS), Europe (EUR), and South Asia (SAS).

Associations between genetic ancestry proportions and somatic variants were assessed for 67 PRAD-related logistic regression models. using genes Likelihood ratio tests were employed to compare models with and without genetic ancestry terms. The Benjamini-Hochberg method was utilized to correct pvalues and control the false discovery rate at 5% for each mutation type.

Separate analyses were performed for copy number alterations (CNAs), oncogenic gene fusions, small splice and non-synonymous mutations (NS), OncoKB therapeutic level L1, L2, or resistance level R1 mutations, and small missense driver somatic mutations predicted with boostDM.¹ Tests of small variants used patients with available matched normal tissue only to avoid artifacts from misclassification of germline variants.

References

1. Muiños, F., Martínez-Jiménez, F., Pich, O., Gonzalez-Perez, A. & Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. Nature 596, 428-432 (2021)

SUMMARY

RESULTS

Mutation types and genes tested

	Mutation type	Samples included	N tests	Genes
_	Small, nonsynonymous	Tumor normal matched (N=3,692)	42	APC, AF ATM, A BRCA2, CTNNB FOXP1, KDM6A KMT2D, MTOR, F NF1, PII PIK3R1, RNF43, SMARC TMPRS ZFHX3
-	Copy number alterations	All samples (N=5,959)	10	APC, AF LRP1B, RB1, TP
-	Oncogenic gene fusions	All samples (N=5,959)	1	TMPRS
-	OncoKB therapeutic level L1, L2, or resistance level R1	All samples (N=5,959)	1	PIK3CA
-	Predicted driver somatic mutations using boostDM	Tumor normal matched (N=3,692)	12	APC, AF CTNNB KMT2D, SPOP, 1

Table 1. Mutation types, sample types, number of tests, and genes tested. Only genes and gene sets with mutations present in at least 1% of patients were tested.

Additionally, genes in the PI3K/AKT/mTOR pathway (AKT1, AKT2, AKT3, INPP4B, MTOR, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PPP2R1A, PTEN, RICTOR, RPTOR, STK11, TSC1, TSC2) were grouped together to increase statistical power, since genes in this pathway may be mutually exclusive, requiring only a single hit to the pathway to drive cancer development. Mutation types in the pathway were also combined.

• By analyzing a large, diverse real-world cohort and leveraging NGS-inferred genetic ancestry, this study confirms known associations between somatic alterations in PRAD cancer genes and race and ethnicity.

• The study also unveiled novel associations between genetic ancestry and somatic mutations of potential significance for understanding disparities in disease outcomes.

Figure 5. EAS was negatively associated with *TP53* (OR=0.96, p=0.04) and positively with FOXA1 (OR=1.06, p=0.03) driver mutations. We also identified a novel positive association between AMR ancestry and driver mutations in *PIK3C3A* (OR=1.12, p=0.0003).

Indicates a previously known association.

Interpretation of ORs: the increase or decrease in odds of a patient having a somatic mutation per doubling of a specific ancestry proportion, adjusted for xT assay version and the other four ancestry proportions.

"TEMPUS

Published Abstract Number: 2147

				Ancestry
•				• AFR
0.94	0.96	0.98	ا 1.00	
er doubling c	of ancestry	proportion		

mutations in the PI3K/AKT/mTOR pathway genes, while AFR and EUR ancestries had lower odds of mutations in these genes. We also identified a novel association between AMR ancestry and small NS mutations or CNAs in these PI3K/AKT/mTOR genes (OR=1.03, p=0.04).