xF Validation

The non-invasive Tempus xF liquid biopsy assay detects cell-free DNA (cfDNA) in blood specimens of patients with advanced solid tumors. The assay is capable of detecting mutations in two variant classes in 105 genes, including: Single Nucleotide Variants (SNVs) and insertions and deletions (INDELs), as well as Copy Number Gains (CNGs) in 6 genes, and gene rearrangements in 7 genes spanning ~0.3 Mb of genomic space. The assay spans clinically relevant coding exons for 35 genes and covers recurrent hotspot mutations in 70 genes. Insertions and deletions will be reported down to the lower limit of detection in clinically relevant regions in 97 genes (list available upon request). The panel is designed to provide clinical decision support for patients with solid tumors and is focused on the identification of oncologic, including resistance, mutations. The report includes therapy options and clinical trials matched to the patient's genomic profile, as well as clinical history. Microsatellite Instability High (MSI-H) status is reported when detected. Blood Tumor Mutational Burden (bTMB) status is also reported when detected for tests performed in the Tempus Chicago, IL laboratory.

CAP/CLIA validation of the Tempus xF panel at Tempus' Chicago, Illinois and Durham, North Carolina laboratories focused on the detection of actionable oncologic and resistance variants in blood plasma. The assay requires two 8.5 mL Streck tubes of peripheral blood. Clinical sequencing is performed to ~20,000x coverage (at least 5,000x unique reads). Performance specifications are listed in Tables 1 and 2 below. These results establish, as shown in the tables, high sensitivity and specificity for the Tempus xF assay.

Not intended for:

- Hematologic malignancies
- Early stage (stage I/II) cancers
- Primary CNS malignancies

xF PERFORMANCE SPECIFICATIONS-CHICAGO LAB

Variant Class	VAF	Sensitivity	Specificity	LOD
Single Nucleotide Variants (SNVs)	≥0.25%	98.5%	>99.9%	0.25%
	0.10%	66.7%		
Insertions and Deletions (INDELs)	≥0.5%	98.5%	>99.9%	0.5%
	0.25%	75.0%		
Copy Number Gains (CNGs)	≥0.5%	>99.9%	96.2%	0.5%
	0.5%	>99.9%		
Rearrangements	≥1%	94.4%	>99.9%	1%
	0.5%	75.0%		
Microsatellite Instability High (MSI-H) Status	_	31.3%	>99.9%	_
Blood Tumor Mutational Burden (bTMB)	_	39.0%	95.3%	_

xF PERFORMANCE SPECIFICATIONS-DURHAM LAB

Variant Class	VAF	Sensitivity	Specificity	LOD
Single Nucleotide Variants (SNVs)	≥0.25%	99.6%	>99.9%	0.25%
	0.10%	75.6%		
Insertions and Deletions (INDELs)	≥0.5%	99.5%	>99.9%	0.5%
	0.25%	91.1%		
Copy Number Gains (CNGs)	≥2.5%	>99.9%	>99.9%	2.5%
	1%	66.7%		
Rearrangements	≥1%	>99.9%	99.2%	1%
	0.5%	98.2%		
Microsatellite Instability High (MSI-H) Status	_	85.7%	>99.9%	_

xF Gene List

AKT1	BRAF	CDK6	FGFR1	HRAS	MAP2K1	MYCN	PDGFRA	RET	TERT
AKT2	BRCA1	CDKN2A	FGFR2	IDH1	MAP2K2	NF1	PDGFRB	RHEB	TP53
ALK	BRCA2	CTNNB1	FGFR3	IDH2	MAPK1	NF2	РІКЗСА	RHOA	TSC1
APC	ВТК	DDR2	FGFR4	JAK1	MET	NFE2L2	PIK3R1	RIT1	TSC2
AR	CCND1	DPYD	FLT3	JAK2	MLH1	NOTCH1	PMS2	RNF43	UGT1A1
ARAF	CCND2	EGFR	FOXL2	JAK3	MPL	NPM1	PTCH1	ROS1	VHL
ARID1A	CCND3	ERBB2(HER2)	GATA3	KDR	MSH2	NRAS	PTEN	SDHA	
ATM	CCNE1	ERRFI1	GNA11	KEAP1	MSH3	NTRK1	PTPN11	SMAD4	
ATR	CD274(PD-L1)	ESR1	GNAQ	KIT	MSH6	PALB2	RAD51C	SMO	
B2M	CDH1	EZH2	GNAS	KMT2A	MTOR	PBRM1	RAF1	SPOP	
BAP1	CDK4	FBXW7	HNF1A	KRAS	МҮС	PDCD1LG2	RB1	STK11	

GENE REARRANGEMENTS

ALK, BRAF, FGFR2, FGFR3, NTRK1, RET, ROS1

COPY NUMBER GAINS

CCNE1, CD274(PD-L1), EGFR, ERBB2(HER2), MET, MYC