ROS1 single nucleotide variants predict favorable survival outcomes on immunotherapy regimens in non-small cell lung cancer

Yue Wu¹, Jaclyn LoPiccolo², Sebastian Carrasco Pro³, Krishna C. Bulusu¹, Etai Jacob¹, Alexander Gusev², Gerald J. Sun¹ ¹AstraZeneca, Waltham, MA, USA, ²Medical Oncology, Dana Farber Cancer, Boston, MA, USA, ³Tempus AI, Inc, Chicago IL

Background

Only a fraction of non-small cell lung cancer patients who receive immune checkpoint inhibitor (ICI) treatment will respond, largely because current FDA-approved biomarkers still leave room for improvement to identify more responders. We hypothesized that modeling the time-dependent interaction between treatment and tumor genetics may reveal novel associations. We further hypothesized that real-world data (RWD), as opposed to clinical trial data, may contain these associations, as RWD possesses a potentially more diverse patient population and time-to-event treatment history across the diverse regimens used in routine clinical practice.

Method

We examined the relation between tumor genetics, treatment, and real-world progression-free survival (PFS) in two RWD cohorts (Tempus discovery cohort, n = 1458; Dana Farber Cancer Institute Profile independent validation cohort, n = 466) by utilizing a Cox proportional hazards model with a time-dependent covariate for whether a patient was receiving an ICI-containing treatment regimen. Specifically, we included an indicator variable that denoted whether an individual was receiving an ICI regimen (=1) or not (=0), and enumerated the time intervals associated with each treatment status. We performed a univariate analysis for each mutated gene from tumor sequencing, and included a gene-treatment interaction term to permit identification of genes that were predictive (i.e. specific to a treatment) rather than prognostic. Our model included additional covariates to control for known predictive (tumor mutation burden[TMB]) and prognostic factors (age, sex).

The analysis model is as follows:

$$h(t) = h_0(t) \exp(\beta_0 X + \beta_1 T(t) + \beta_2 X * T(t) + \sum_c C_i \beta_{C_i}$$

C: {age, sex, smoking status, TMB}

X : gene being tested

T(t): a time-dependent covariate indicating ICI treatment status

Results

	TEMPUS (N=3081)	Pro (N=2
Ever on ICI, N (%)	2371(76.9)	1251(
Age, N (%)		
<65y	1390(54.9)	1008(
>=65	1691(45.1)	1002(
missing		631(2
Sex, N (%)		
Male	1574(51.1)	1097(
Female	1507(48.9)	1545(
Histology, N (%)		
has adenocarcinoma	2142(69.5)	2036(
none-adenocarcinoma	939(30.5)	606(2
First ICI(+x) line, N (%)*		
1	1769(74.6*)	721(5
2+	602(25.4*)	530(4
Stage, N (%)		
less than Stage 3	120(3.9)	500(*
Stage 3	614(19.9)	317(⁻
Stage 4	2244(76.2)	1037(
missing		865(3
Smoker, N (%)		
No	1286(41.7)	N
Yes	1795(58.3)	N
Key gene prevalence, N (%)		
STK11	393(12.8)	410(*
KEAP1	461 (15.0)	389(*
ROS1	155(5.0)	180(
tout of complete over on ICI		

Cohort demographics (age, sex, smoker), clinical (histology subtype, line of ICI treatment, disease stage) and genomic profiles (key gene mutation prevalence).

on ICI therapy

Discovery Model

Profile n = 466

association between ROS1 single nucleotide variation (SNV) and favorable PFS on ICI versus non-ICI treatment. This association replicated in an independent validation cohort (Profile). KM curves represent simplified ROS1 SNV effect on ICI versus non-ICI treatment in TEMPUS and Profile.

from ROS1 fusion, PD–L1, and TMB

