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High-throughput screening of immunotherapies is crucial 
for identifying promising candidates against various 
cancer indications and accelerating the pre-clinical 
development of cell therapies.  Patient-derived organoid 
(PDO) models, co-cultured with cell therapies and 
combined with deep learning-based computer vision 
facilitate large-scale, automated image analysis to extract 
quantitative metrics of treatment efficacy and cell biology 
effects. 

● We present a highly scalable pipeline based on brightfield imaging to quantify treatment efficacy and provide insights into the 
pharmacokinetics and activation mechanisms for specific immune cell therapies. 

● Stratification of therapies using CNN-based label-free viability prediction shows high concordance with ground truth, eliminating the need for 
fluorescent vital dye stains and enabling dynamic response readouts without impairing cell function. 

● Interpretable features of response cluster therapies into functional groups, capturing differential mechanistic effects such as infiltration and 
apoptosis dynamics and offer a more comprehensive view of therapy efficacy compared to standard terminal viability readouts. 

Figure 4. (left) Viability predictions from the convolutional deep network were highly 
concordant with those obtained from the TOPRO3 terminal vital dye stain (Pearson 
r=0.80, RMSE=0.14), with a distribution of errors largely uniform across the 9 
indications (right).  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Figure 1. Imaging and modeling workflow  

Figure 2. Stratification of therapies across all PDO lines and treatments by predicted terminal viability. Data are sorted 
by the median viability. Cell therapy viabilities span a wide range of values encompassed by the positive 
(Staurosporine) and negative (untreated) controls.  

● Time-lapse confocal microscopy was used to record 
images of a large cohort of 16 cell therapies co-cultured 
with 60 different PDO lines across 9 cancer indications. 

● A convolutional deep neural network (CNN) was trained 
to perform label-free predictions of PDO viability from 
brightfield images only, at each timepoint. 

● Deep learning segmentation models (UNET) were 
further used to co-localize tumoroids and immune cells  
in brightfield images, and extract a set of interpretable 
features (phenotypes) of response. 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Figure 5. Phenotypes of response cluster therapies into consistent functional groups of immune cell 
types (1, 2, CAR-engineered). Phenotypes are derived from segmentation models and quantify 
changes in tumoroid area, cell apoptosis intensity and its temporal dynamics, as well as immune 
infiltration across all PDO lines. Type 2 and CAR-engineered therapies inhibit growth, show higher 
infiltration and peak caspase, as well as lower peak apoptosis time than Type 1, suggesting a faster 
and more targeted tumor killing action. Negative controls and non-optimized Type 2 therapies 
show lower caspase and infiltration, as well as increased PDO area, suggestive of both decreased 
killing and cytostatic action. 

Figure 3. Ranking of cell therapies using the terminal predicted 
viability is highly correlated with the ground truth ranking obtained 
by terminal vital dye stain (Spearman correlation=0.88). 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