## Identification of predictive biomarkers of response to ADCs by HTS of highly molecularly characterized panels of patient-derived organoids (PDOs)

Yi-Hung Carol Tan<sup>1</sup>, Daniel Gorski<sup>1</sup>, Paul Fields<sup>1</sup>, Brandon Mapes<sup>1</sup>, Brian Larsen<sup>1</sup>, Jessica Barbeau<sup>1</sup>, Shanzah Chaudhry<sup>1</sup>, Megan Spector<sup>1</sup>, Carrie Franzen<sup>1</sup>, Richard Klinghoffer<sup>1</sup> <sup>1</sup>Tempus AI, Inc., Chicago, IL

### INTRODUCTION

Antibody-drug conjugates (ADCs) such as the NECTIN-4 targeting agent enfortumab vedotin, the HER2-targeting agent trastuzumab deruxtecan, and the TROP-2 targeting agent sacituzumab govitecan, have resulted in increased clinical response rates in previously difficult to treat solid tumor indications, but only a minority of patients exhibit such responses. Increased understanding of the molecular underpinnings of sensitivity and resistance to ADCs beyond membranous target expression is needed. To that end, we developed a cohesive systems biology platform that pairs functional screening of extensive panels of multimodal characterized patient-derived organoids (PDOs) and anchoring findings in real world data (RWD). Here, we report on a screening panel of 65 PDOs representing 10 solid tumor indications and focus on response to the NECTIN-4 targeting ADC, enfortumab vedotin.



**Figure 1.** Tempus provides tumor platforms that balance disease relevance and scale, and combine with real-world data (RWD) to uncover meaningful drug response insights to rapidly advance client programs/pipelines.



Figure 2. PDOs more accurately recapitulate the tumor microenvironment compared to traditional 2D cell line cultures.

#### ACKNOWLEDGMENTS

We thank Dana DeSantis from the Tempus Science Communications team for poster development.







**Figure 3.** Heatmap of the inverse area under the curve (iAUC) for PDOs across 10 cancer types. The X-axis represents individual PDO models, while the Y-axis displays the screened antibody-drug conjugates (ADCs) and their payloads.

#### **PDO sensitivity to enfortumab vedotin is** correlated with NECTIN-4 expression

#### **PDO sensitivity to enfortumab vedotin exhibits a strong** correlation with the enfortumab vedotin sensitivity signature (EVSS) score



Figure 4. Comparison of PDO response to enfortumab vedotin (measured as iAUC) and NECTIN-4 expression (Log2(TPM+1)).



**Figure 5.** Narrowing down the EVSS from the whole transcriptome including NECTIN-4 without informed or forced selection. (A) Correlation between PDO enfortumab vedotin (EV) dose-response iAUC and EVSS. (B) Box plots depicting the correlation between EVSS and iAUC of EV dose response.



## **SUMMARY**

## "TEMPUS

**Abstract Presentation # 5993** 

• Drug response was quantified using a normalized inverse area under the curve metric (iAUC), where higher values indicate a larger reduction in viability.

• Full transcriptome RNA-seq data from xR (Tempus real world data platform) was initially quantified with our standard pipeline (Kallisto, hg19)

• Genes were selected that had a mean expression >1 TPM log2+1 and had a variance across PDOs >1 (n=4,695)

• A final gene list was selected using an elastic net regression and genes were selected utilizing bootstrapping, within 1 standard error of the min lambda and were included in at least 50 of 100 bootstraps.

# Patients with high enfortumab vedotin sensitivity signature had

#### Figure 6. Real-world data on clinical outcomes in urinary tract patients with **NECTIN-4 gene alterations.** The Kaplan-Meier curves illustrate progression-free survival (PFS) stratified by high and low EVSS:

(A) Patients with pre-treatment biopsies who received EV.

(B) Patients with pre-treatment biopsies who did not receive EV.

• Our results demonstrate that screening pan-indication panels of PDOs can reveal ADC specific differences in efficacy which are rooted in molecular factors that include, but are not limited to target expression.

• Further analysis is ongoing, including establishing the prevalence of non-ADC target biomarkers in real-world patient populations via projection of our screen-derived data onto Tempus RWD.