Visium HD combined with deep-learning-based cell segmentation on H&E images yield accurate cell annotation

at single-cell resolution
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INTRODUCTION SUMMARY

Bulk and single-cell next-generation sequencing (NGS) have been valuable @ \We demonstrate the feasibility and advantages of analyzing Visium HD data at single-cell resolution using deep-learning-based

tools for characterizing gene expression profiles of tumor samples. : - -
owever, their utility in investigating tissue architecture and cellular segmentation models applled to H&E IMmages.

interactions in the tumor microenvironment (TME) is limited by the lack of ~ ® Cell clusters and LLM-based cell type annotations derived from single-cell resolution Visium HD data are highly consistent with
spatial context. NGS-based Spatial Transcriptomics (ST) technologies have pathologist annotations and morphology-based cell classification models.
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the recent launch of 10X Genomics Visium HD platform which achieves biomarker discovery and achieves enhanced biological interpretability compared to detfault 8 um pixel resolution.
whole-transcriptome profiling at 2 um resolution. However, the default

binning of Visium HD at 8 um resolution overlooks cell morphology and RESULTS
complicates downstream biological interpretations of the data by merging
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Figure 4. Expression of marker genes identified for each cluster in the immune-active sample,
demonstrating the distinct gene expression profiles that differentiate each cell cluster. Cell
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oty At 9 um (left) and results from H&E-based lymphocyte identification model (center) reveals similar spatial distribution  log-transformed IGHG1 gene expression (right) for the selected region in Figure 2 for the
resolution A patterns for both the immune-inactive sample (top row) and the immune-active sample (bottom row). The Immune-active sample. Visualizations and marker gene expressions confirmed the

Nuclei region In the black box of the iImmune-active sample is further studied in Figure 5. annotated stroma region is heavily infiltrated by lymphocytes.
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identification sample (left), 65.9% and 97.0% of cells in annotated tumor and stroma regions were classified as Log2 Fold Change Log2 Fold Change
cancer/epithelial cells and fibroblasts respectively. In the immune-active sample (right), 87.7% of cells in Figure 6. Differential gene expression analysis results between H&E-identified lymphocytes
annotated lymphocyte regions were classified as plasma cells or B cells, 91.1% of cells in annotated tumor and non-lymphocytes for the immune-inactive sample (left) and the immune-active sample
MEMPUS [OHE I EREAL regions were classified as basal/squamous epithelial cells, and 77.6% of cells in annotated benign (right). Multiple lymphocyte marker genes were upregulated in H&E-identified lymphocytes,
Figure 1. ST data generation and single-cell-level data analysis workflow. epithelium regions were classified as mucous secreting cells. Also, 76.9% of H&E-identified lymphocytes demonstrating consistency between morphology- and transcript- based models. P-values
were classified as plasma cells/B cells. derived from a t-test.
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