Metabolic and tumor immune cell landscapes are significantly different amongst KRAS mutational variants in non-small cell lung cancer

Frank Weinberg¹, Jennifer Godden², Denise Shieh², Stamatina Fragkogianni², Jacob Mercer², Melissa C. Stoppler², Nary Jo Fidler⁵, Ryan Nguyen¹, Kamya Sankar⁴, Koosha Paydary⁵, Mary Jo Fidler⁵ ¹University of Illinois Chicago, Chicago, IL; ²Tempus AI, Inc., Chicago, IL; ³University of Wisconsin, Madison, WI; ⁴Cedars-Sinai Medical Center, Los Angeles, CA; ⁵Rush University, Chicago, IL

INTRODUCTION

- Approximately 30% of patients with non-small cell lung cancer (NSCLC) have mutations in the KRAS oncogene.
- In NSCLC, *KRAS* mutational variants are diverse and therapeutically relevant.
- However, it is unclear how each variant is associated with the tumor biology, including lipid metabolism and the immune microenvironment.
- Since perturbed tumor immune infiltration and lipid metabolism have been previously linked to NSCLC outcomes, we evaluated and characterized KRAS variants and their association with lipid metabolism and immune infiltration.

METHODS

- De-identified records of 5,925 patients diagnosed with NSCLC who also harbored KRAS alterations were retrospectively analyzed.
- Samples were sequenced with the Tempus xT and xR RNA assays.

- Tumor microenvironment cell proportions were estimated using QuanTIseq.
- Single-sample gene set enrichment analysis (ssGSEA) based on 775 lipid metabolic genes was used to compute enrichment scores (ES) for each
- Neoantigen tumor burden (NTB) and tumor mutational burden (TMB) were analyzed as mutations per megabase (mut/Mb).
- P-values were calculated using Pearson's Chi-squared and Kruskal-Wallis rank sum test.
- Pairwise comparisons of median ES were performed using the Wilcoxon test and the FDR method was used to correct for multiple comparisons.

ACKNOWLEDGMENTS

We thank Vanessa M. Nepomuceno, Ph.D. from the Tempus Science Communications team for poster development.

SUMMARY

• Smoking history differed significantly between KRAS variants, with the highest proportion of never smokers observed in patients with KRAS G12D alterations. • Lipid gene enrichment scores were lower in patients with KRAS G12C variants than in those with G12D or G12V variants. • Immune infiltration levels differed significantly between different KRAS variants. • Notably, patients with KRAS G12D variants had a less immunogenic immune microenvironment as indicated by a lower TMB, NTB, and proportion of CD8 T cells and M1 macrophages compared to G12C variants, which could affect immunotherapy efficacy. • Future work should investigate whether lipid metabolism alongside a less immunogenic immune microenvironment modulates a decreased response to immunotherapy in patients with KRAS G12D variants.

RESULTS

Table 1. Demographic Information

Characteristic	Overall N = 5,925 ¹	G12A N = 464 ¹	G12C N = 2,510 ¹	G12D N = 937 ¹	G12R N = 61 ¹	G12V N = 1,251 ¹	G13C N = 244 ¹	G1 3 N = 1
Age at Primary Diagnosis								
Median (Q1, Q3)	68	69	68	69	68	69	67	67
	(62, 75)	(64, 76)	(62, 75)	(62, 76)	(61,74)	(63, 76)	(62, 74)	(62,
Sex								
Female	3,393 (57%)	259 (56%)	1,463 (58%)	516 (55%)	31 (51%)	728 (58%)	134 (55%)	91 (4
Male	2,532 (43%)	205 (44%)	1,047 (42%)	421 (45%)	30 (49%)	523 (42%)	110 (45%)	94 (5
Race								
White	3,282 (82%)	264 (85%)	1,408 (83%)	526 (81%)	32 (84%)	660 (81%)	126 (78%)	114 (9
Black or African American	449 (11%)	33 (11%)	182 (11%)	74 (11%)	4 (11%)	99 (12%)	30 (19%)	7 (5.0
Other Race	194 (4.9%)	9 (2.9%)	84 (4.9%)	36 (5.5%)	2 (5.3%)	46 (5.6%)	6 (3.7%)	3 (2.4
Asian	64 (1.6%)	5 (1.6%)	26 (1.5%)	15 (2.3%)	0 (0%)	14 (1.7%)	0 (0%)	1 (0.8
Unknown	1,936	153	810	286	23	432	82	60
Smoking Status								
Ex-smoker	2,220 (54%)	165 (55%)	984 (56%)	335 (50%)	22 (46%)	466 (55%)	80 (50%)	60 (5
Current-smoker	1,564 (38%)	110 (37%)	738 (42%)	182 (27%)	21 (44%)	313 (37%)	76 (47%)	51 (4
Never-smoker	315 (7.7%)	24 (8.0%)	36 (2.0%)	154 (23%)	5 (10%)	74 (8.7%)	5 (3.1%)	8 (6.'
Unknown	1,826	165	752	266	13	398	83	66

Figure 1. Comparison of tumor immune biomarkers and lipid metabolic profiles between KRAS variants

"I"EMPUS

Abstract Presentation #3890

Figure 1.(A) Tumor mutational burden. (B) PD-L1 IHC positivity rates. (C) Neoantigen tumor burden. (D) Lipid metabolic gene enrichment score. KRAS G12C used as a reference category for (A), (C), and (D), and only select significant comparisons were included. FDR corrected p-values: ***(<0.001), ****(<0.0001).