

CARE ISPOR 2025 Abstract

Oncology Trial Emulation Using Real-World Electronic Health Record Data: Results of the Coalition to Advance Real-World Evidence through Randomized Controlled Trial Emulation (CARE) Initiative

Natalie Levy, Paige Sheridan, Ulka Campbell, David Lenis, Inish O'Doherty, Adina Estrin, Nileesa Gautam, Thomas Zhen, Drew Belli, Gillis Carrigan, K Arnold Chan, **James L Chen**, Victoria Chia, Neil Dhopeshwarkar, Joy Eckert, Laura Fernandes, Joel Greshock, Rachele Hendricks Sturrup, Jenny Huang, XiaoLong Jiao, Sajan Khosla, Orsolya Lunacsek, Lynn McRoy, Yanina Natanzon, Osayi Ovbiosa, Nelson Pace, Simone Pinheiro, Jameson Quinn, Megan Rees, Jennifer Rider, Mothaffar Fahed Rimawi, Travis Robinson, Carla Rodriguez-Watson, **Chithra Sangli**, Khaled Sarsour, Sebastian Schneeweiss, Mark Shapiro, Mark Stewart, Aliki Taylor, CK Wang, Shirley Wang, Asher Wasserman, Yiduo Zhang, Ann Madsen

(Word count: 303/304)

Abstract Type: Original Research

Main Topic/Taxonomy: Real World Data & Information Systems

Primary Specific Disease: Oncology

Objectives

The Coalition to Advance Real-World Evidence through Randomized Controlled Trial (RCT) Emulation (CARE) Initiative seeks to advance understanding of when real-world data (RWD) can generate valid treatment effectiveness estimates by emulating RCTs using RWD. We present findings from three oncology emulations.

Methods

Following rigorous RCT and fit-for-purpose data selection, we emulated the KEYNOTE-189 (metastatic NSCLC) trial of first-line pembrolizumab+chemotherapy vs. chemotherapy in two electronic health record datasets (DS3 and DS4) and the PALOMA-2 (advanced breast cancer) trial of first-line palbociclib+letrozole vs. letrozole in DS3. Trial entry criteria were applied, as feasible. Treatment status was

based on first-line medications (using vendor-defined line of therapy algorithms) initiated during a fixed ascertainment period. Inverse probability of treatment weighting was used to control baseline confounding. Kaplan-Meier and Cox proportional hazards models were used to estimate the primary outcome(s).

Results

The KEYNOTE-189 real-world progression-free survival (rwPFS) hazard ratio (HR) emulated in DS4 was similar to the RCT finding, whereas the DS3 result was closer to the null [RCT: HR=0.52 (0.43, 0.64); DS4: HR=0.64 (0.47, 0.84); DS3: HR=0.81 (0.65, 1.00)]. The PALOMA-2 rwPFS HR emulated in DS3 was also closer to the null [RCT: HR=0.58 (0.46, 0.72); DS3: HR=0.84 (0.61, 1.23)]. KEYNOTE-189 real-world overall survival estimates in DS4 were closer to the null, whereas DS3 results crossed the null [RCT: 0.49 (0.38, 0.64), DS4: 0.89 (0.63, 1.29), DS3: 1.18 (0.95, 1.44)].

Conclusions

RWD oncology emulation conclusions may depend on: dataset features (predominantly academic vs. community, uptake of newly approved therapies, death capture), route of administration (oral vs. infusion), and real-world follow-up (frequency of visits, progression assessments). Interpretable RWE study results require understanding real-world patterns of care.