

Molecular characterization of resected non-metastatic pancreatic cancer (PC) based on KRAS status

Angelo Pirozzi^{1,10}, Ellen B. Jaeger², Cody Eslinger², Matina Fragkogianni², Unnati Jariwala², Arya Ashok², Naohiro Okano³, Celine Hoyek⁴, Taro Shibuki^{3,9}, Binbin Zheng-Lin⁶, Oluseyi Abidoye⁴, Daniel H. Ahn¹, Christina Wu¹, Mohamad Bassam Sonbol¹, John H. Strickler⁵, Takayuki Yoshino^{6,8}, Masafumi Ikeda⁷, Lorenza Rimassa¹⁰, Mitesh J. Borad⁴, Tanios S. Bekaii-Saab¹

¹Division of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA, ²Tempus AI, Inc., Chicago, IL, USA, ³Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan, ⁴Division of Internal Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA, ⁵Department for the Promotion of Drug and Diagnostic Development, Division of Drug and Diagnostic Development Promotion, Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan, ⁶Earle A. Chiles Research Institute, Portland, OR, USA, ⁷Duke Cancer Institute, Duke University, Durham, NC, USA, ⁸Department of Global Oncology, National Cancer Center Hospital East, Kashiwa, Japan, ⁹Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan, ¹⁰Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, and Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy

INTRODUCTION

- Surgery is the only potentially curative option for PC. However, only a minority of patients (pts) undergo resection with current perioperative (periop)-chemotherapy (CT).
- In the absence of phase III trials, selection between mFOLFIRINOX and gemcitabine/nab-paclitaxel (gem-nab) is based on limited evidence.
- We assessed whether NGS-based tumor profiling can guide tailoring of CT.

METHODS

Tempus Lens was utilized to identify PC patients sequenced with xT or xF assays. Lens provides access to Workspaces, a computational platform embedded within Lens that enables quick insight extraction from select cohorts of Tempus data using a rich library of tools. Patients were selected as described in **Figure 1**. Clinical and demographic characteristics were compared using Pearson's Chi-squared/Fisher's exact or Wilcoxon rank sum tests, as applicable. Overall survival was evaluated from CT therapy start to death, last follow-up, or study cutoff of 5 years after CT initiation using Kaplan-Meier approach and was restricted to patients with study entry prior to treatment initiation.

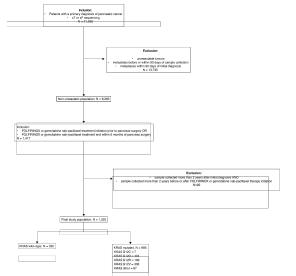


Figure 1. Diagram of cohort selection and KRAS subgroups.

We thank the Tempus Science Communications team for poster development.

SUMMARY

- KRAS status does not predict response to mFOLFIRINOX or gem-nab in resected PC.
- KRAS status is associated with distinct profiles of potentially targetable co-alterations.

RESULTS

Table 1. Baseline demographic and clinical characteristics of study cohort by KRAS mutation status

Characteristic	Overall N = 1,325	KRAS wt N = 330	KRAS mut N = 995	p-value
Age at diagnosis				0.7
Median (Q1, Q3)	66 (59, 72)	66 (59, 72)	66 (59, 72)	
Unknown	3	1	2	
Treatment Setting¹				0.002
Neoadjuvant	664 (50%)	175 (53%)	489 (49%)	
Perioperative	341 (26%)	85 (26%)	256 (26%)	
Treatment start before surgery, treatment end unknown	170 (13%)	51 (15%)	119 (12%)	
Adjuvant	150 (11%)	19 (5.8%)	131 (13%)	
Stage²				0.076
Stage 1	136 (27%)	39 (33%)	97 (25%)	
Stage 2	204 (41%)	38 (32%)	166 (44%)	
Stage 3	159 (32%)	41 (35%)	118 (31%)	
Unknown	826	212	614	

Table 2. Median OS for gemcitabine plus nab-paclitaxel vs FOLFIRINOX across KRAS status.

KRAS cohort	Treatment group	Median OS (months)	95% CI	p-value
KRAS wt	Gemcitabine plus nab-paclitaxel (N=69)	26.37	22.39 - 36.43	0.707
	FOLFIRINOX (N=223)	30.05	25.02 - 33.96	
G12C	Overall (N=7)	24.76	8.05 - NA	NA
	Gemcitabine plus nab-paclitaxel (N=99)	14.53	7.89 - 17.42	
G12V	FOLFIRINOX (N=251)	17.79	15.02 - 20.35	0.050
	Gemcitabine plus nab-paclitaxel (N=73)	20.55	15.19 - 24.59	
KRAS other	FOLFIRINOX (N=197)	22.19	19 - 24.46	0.392
	Gemcitabine plus nab-paclitaxel (N=17)	16.93	8.84 - 26.79	
	FOLFIRINOX (N=53)	16.41	13.58 - 19.66	0.919

Table 3. Genomic alteration frequency by KRAS mutation status

Gene	Overall N = 1,325	KRAS wt N = 330	KRAS mut N = 995	p-value
<i>TP53</i> any	829 (63%)	73 (22%)	756 (76%)	<0.001
<i>SMAD4</i> any	297 (22%)	19 (5.8%)	278 (28%)	<0.001
<i>CDKN2A</i> any	355 (27%)	28 (8.5%)	327 (33%)	<0.001
<i>NRK1</i> fusion	2 (0.2%)	2 (0.6%)	0 (0%)	0.062
<i>NRK3</i> fusion	2 (0.2%)	0 (0%)	2 (0.2%)	>0.9
<i>BRAF</i> V600E	5 (0.4%)	5 (1.5%)	0 (0%)	<0.001
<i>ERBB2</i> cN amp	14 (1.1%)	1 (0.3%)	13 (1.3%)	0.2
<i>NRG1</i> fusion	1 (0.1%)	1 (0.3%)	0 (0%)	0.2
<i>ARID1A</i> any	82 (6.2%)	4 (1.2%)	78 (7.8%)	<0.001
<i>KMT2C</i> any	27 (2.0%)	2 (0.6%)	25 (2.5%)	0.034
<i>MYC</i> cN amp	20 (1.5%)	3 (0.9%)	17 (1.7%)	0.4
<i>PIN3C4</i> any	20 (1.5%)	4 (1.2%)	16 (1.6%)	0.8
<i>PTEN</i> any	12 (0.9%)	3 (0.9%)	9 (0.9%)	>0.9
<i>AKT2</i> any	16 (1.2%)	2 (0.6%)	14 (1.4%)	0.4
<i>AKT3</i> any	6 (0.5%)	1 (0.3%)	5 (0.5%)	>0.9
<i>MTP</i> cN del	83 (6.1%)	4 (1.2%)	77 (7.7%)	<0.001

Figure 2. Overall survival by KRAS mutation status in patients with study entry prior to treatment initiation

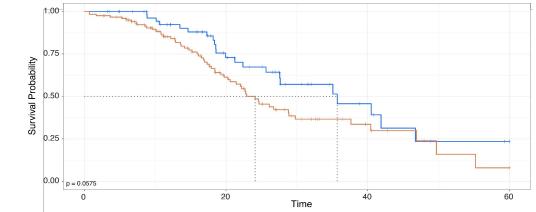
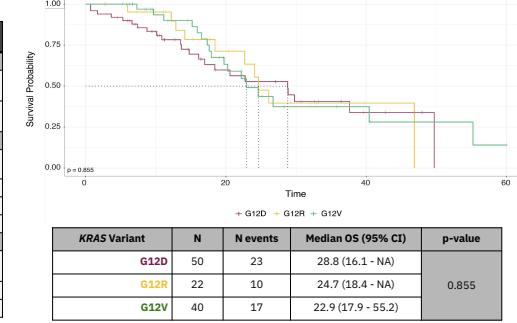



Table 4. Immune biomarkers in xT tested population by KRAS mutation status

Biomarker	Overall N = 1,176	KRAS wt N = 198	KRAS mut N = 978	p-value
TMB				<0.001
Median (Q1, Q3)	2.29 (1.58, 3.68)	1.58 (0.53, 2.63)	2.63 (1.58, 3.68)	
TMB high (≥ 10 mut/Mb)	10 (0.9%)	4 (2.0%)	6 (0.6%)	0.071
MSI status				0.7
Stable	1,170 (99%)	197 (99%)	973 (99%)	
High	4 (0.3%)	1 (0.5%)	3 (0.3%)	
Equivalocal	2 (0.2%)	0 (0%)	2 (0.2%)	
MMR deficient	2 (0.2%)	0 (0%)	2 (0.2%)	>0.9
PD-L1 22C3 TPS				0.033
Unknown/not tested	668 (57%)	129 (65%)	539 (55%)	
< 1%	384 (33%)	53 (27%)	331 (34%)	
$\geq 1\%$	124 (11%)	16 (8.1%)	108 (11%)	

Figure 3. Overall survival by KRAS G12 variant

