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Paige Predict
An AI-enabled digital pathology application for 
biomarker status prediction

Introduction

When a tissue sample is insufficient for sequencing (QNS), it can 
leave providers without the genomic results needed to inform 
the next steps in a patient’s care. Reattempting sequencing 
requires significant tissue, and prioritizing targeted biomarker 
testing may be difficult.

To help inform testing prioritization and diagnostic yield, Tempus 
developed Paige Predict. This AI-enabled digital pathology 
application analyzes a hematoxylin-and-eosin (H&E) stained 
whole slide image (WSI), digitized as part of our standard lab 
process, to predict the likelihood of key biomarkers when a 
Tempus xT test results in a QNS. Powered by a state-of-the-
art Paige Foundation Model pre-trained with three million 
diverse pathology slides, Paige Predict identifies the phenotypic 
signatures of 123 molecular biomarkers and oncogenic 
pathways across 16 cancer types.

For each molecular biomarker and oncogenic pathway, Paige 
Predict calculates the positive likelihood ratio, relative to the 
patient’s specified disease cohort. The positive likelihood ratio, 
which measures the strength of the application’s predictions, 
compares the probability that the relevant alteration is 
confirmed by subsequent definitive testing with the probability 
that alteration is not confirmed. Paige Predict then calculates a 
“Paige Prediction”, which considers both the general prevalence 
of the alteration within the patient’s cancer cohort, and the 
strength of the predictions as measured by positive likelihood 
ratio. The Paige Prediction reflects the revised expectations, 
after incorporating both prevalence and the Paige Predict 
results, that the patient’s sample will have a positive result for 
the alteration in a confirmatory test. The results also categorize 
the molecular features into Elevated, Typical, and Reduced 
Likelihood groups relative to the patient’s cohort based on the 
calculated likelihood ratio.

These predictions provide clinically relevant information to help 
inform confirmatory testing strategies, maximizing the likelihood 
of receiving an actionable result before exhausting tissue. Paige 
Predict results are probabilistic predictions, so they should not 
be used to determine treatment eligibility or as evidence of 
actual biomarker status.

Analytical validation and performance

The Paige Predict validation study cohort consisted of 7,717 
H&E-stained WSIs from samples sequenced using the Tempus 
xT assay, representing a broad range of solid tumor types (see 
table in appendix). Each molecular feature was represented by 
a minimum of 20 positive and 20 negative quality-controlled 
samples, and is statistically representative of a larger cohort of 
Tempus real-world data.

Each biomarker and oncogenic pathway within each cancer 
cohort was evaluated across multiple experiments to evaluate 
analytical accuracy, analytical sensitivity and specificity, and 
analytical robustness. The analytical validation heavily focused 
on evaluating the performance of Paige Predict in samples with 
limited tumor content, so that it would be more representative 
of the subset of samples where tissue-based sequencing results 
in a QNS.

Each molecular feature within each cancer cohort met the 
following acceptance criteria:

	▪ Minimum analytical accuracy criteria, for which each feature 
must demonstrate overall performance, measured using 
the area under the receiver operating characteristic curve 
(AUC), of  ≥0.70 when evaluated against ground truth from 
the Tempus xT assay.

	▪ Limited performance regression and model stability, within 
defined bounds, when evaluated on samples with limited 
tumor content. These experiments defined the limit of 
detection (LoD) and specimen requirements for Paige 
Predict.

	▪ Tumor content, including both tumor area and the ratio 
of tumor tissue to normal tissue, was evaluated for each 
sample. As tumor content decreased, Paige Predict’s 
performance (AUC) was re-measured to confirm a 
performance difference of no more than 5% compared 
to the full slide reference AUC, and prediction root mean 
square error (RMSE) of less than 0.1. 

	▪ Across the assay, the LoD was established as a combination 
of a minimum tumor area of ≥1.5 mm2 with a tumor-to-
tissue ratio of ≥ 20%. All biomarkers and molecular features 
meet the defined acceptance criteria at the established LoD.  

	▪ Robustness to potential interferences, including blur or 
scanning artifacts, and concordance between multiple 
different WSI scans generated from different scanning 
machines of the same type. 

	▪ Each slide was initially reviewed by a qualified pathologist 
to confirm the WSI was interpretable. For slides passing 
pathology QC, all samples generated Paige Predict results.

	▪ To evaluate reproducibility of the predictions across 
scanning machines, a subset of 300 samples, with 
representation from each cancer cohort, was rescanned 
on a different scanner machine of the same type; RMSE 
remained <0.1 for all molecular features.



Clinical validity of H&E-based  
digital biomarkers

Recently, studies have shown successful deployment of H&E-
based digital biomarkers in real-world clinical trial settings 
to identify actionable alterations, such as FGFR mutations in 
urothelial cancer and EGFR mutations in lung adenocarcinoma, 
for the purpose of selecting appropriate testing and/or quickly 
identify clinical trial options.1,2  

At Tempus, we previously validated a high-performance 
predictor for MSI-H status in prostate cancer,3  demonstrating 
that these models can predict the likely presence or absence 
of rare but therapeutically actionable biomarkers from H&E 
images. These studies confirm that AI-based histopathology 
models provide a reliable, efficient, and clinically actionable 
bridge between routine morphology and definitive molecular 
profiling.

Appendix

Paige Predict demonstrates the following performance across 
molecular features and cancer cohorts:

Cancer Cohort Molecular Feature Average AUC

Bladder Cancer

CCNE1 
amplification

0.79

ERBB2 
amplification

0.81

FGFR3 alterations 0.70
FGFR3 fusions 0.85
HRAS alterations 0.84
KRAS alterations 0.75
MDM2 
amplification

0.72

TP53 alterations 0.77
RTK pathway 0.81

Breast Cancer

AKT1 alterations 0.70
CCNE1 
amplification

0.88

ERBB2 alterations 0.80
ERBB2 
amplification

0.80

ERBB2 SNV/INDEL 0.77
ESR1 alterations 0.86
ESR1 SNV/INDEL 0.83
ESR1 amplification 0.80
MDM2 
amplification

0.74

MTAP deletion 0.75
PTEN deletion 0.80
TP53 alterations 0.89
DNA damage 
response pathway

0.90

RTK pathway 0.85

Brain/CNS Cancer
mTOR pathway 0.75
RTK pathway 0.96

Colorectal Cancer

ARID1A alterations 0.79
BRAF alterations 0.82
ERBB2 
amplification

0.77

FBXW7 alterations 0.73
KRAS alterations 0.82
MSI-H 0.97
PIK3CA alterations 0.76
PTEN alterations 0.85
TMB-H 0.85
TP53 alterations 0.85
mTOR pathway 0.83

Endometrial 
Cancer

AKT1 alterations 0.81
ARID1A alterations 0.85
CCNE1 
amplification

0.91

ERBB2 
amplification

0.90

FGFR2 alterations 0.71
KRAS alterations 0.79
MSI-H 0.88
NF1 alterations 0.71
PPP2R1A 
alterations

0.71

PTEN alterations 0.90
TMB-H 0.85
TP53 alterations 0.93
DNA damage 
response pathway

0.87

HRD pathway 0.76
TGF beta pathway 0.73

Gastroesophageal 
Cancer

ARID1A alterations 0.77
CCNE1 
amplification

0.77

EGFR amplification 0.81
ERBB2 
amplification

0.85

FBXW7 alterations 0.76
FGFR2 
amplification

0.76

MDM2 
amplification

0.79

MSI-H 0.88
PIK3CA alterations 0.73
PTEN alterations 0.77
TMB-H 0.78
TP53 alterations 0.80



Cancer Cohort Molecular Feature Average AUC

Hepatobiliary 
Cancer

ERBB2 alterations 0.78
ERBB2 
amplification

0.86

FGFR2 fusions 0.86
IDH1 alterations 0.91
KRAS alterations 0.89
TP53 alterations 0.89

Melanoma

BRAF alterations 0.75
KIT alterations 0.79
NF1 alterations 0.70
TMB-H 0.76
TP53 alterations 0.85

Non-small cell  
lung cancer

ALK fusions 0.85
CCNE1 
amplification

0.74

EGFR alterations 0.90
ERBB2 
amplification

0.75

FGFR1 
amplification

0.86

KRAS alterations 0.85
MDM2 
amplification

0.74

MET alterations 0.90
MET amplification 0.87
PTEN alterations 0.82
SMARCA4 
alterations

0.81

STK11 alterations 0.93
TMB-H 0.73
TP53 alterations 0.85

Ovarian, Fallopian 
Tube & Primary 
Peritonial Cancer

ARID1A alterations 0.89
BRCA1 alterations 0.76
CCNE1 
amplification

0.81

ERBB2 
amplification

0.80

KRAS alterations 0.89
PIK3CA alterations 0.89
PPP2R1A 
alterations

0.72

PTEN alterations 0.88
TMB-H 0.83
TP53 alterations 0.95

Pancreatic Cancer

CCNE1 
amplification

0.81

KRAS alterations 0.91
PIK3CA alterations 0.73
TIMB-H 0.77
TP53 alterations 0.80
HRD pathway 0.72

Prostate Cancer

CDK12 alterations 0.84
MSI-H 0.91
PTEN alterations 0.72
TMB-H 0.86
TP53 alterations 0.76
mTOR pathway 0.85

Renal Cell 
Carcinoma

PTEN alterations 0.73
TP53 alterations 0.83

Soft Tissue 
Sarcoma

CDK4 amplification 0.85
MDM2 
amplification

0.86

MTAP deletion 0.84
TMB-H 0.77
TP53 alterations 0.84
mTOR pathway 0.83

Thyroid Cancer

BRAF alterations 0.88
NRAS alterations 0.90
TP53 alterations 0.91
mTOR pathway 0.84

Tumor of Unknown 
Origin

TGF beta pathway 0.83

For Paige Predict validation, oncogenic molecular pathways are 
defined by alterations detected in any of these variants:

DNA damage response (DDR) (N=23): ATM, ATR, ATRX, BRCA1, 
BRCA2, BRIP1, FANCA, FANCC, FANCD2, FANCE, FANCF, 
FANCG, FANCL, MDM2, MDM4, MLH1, MUTYH, NPM1, PALB2, 
PPP2R1A, RAD50, RAD51, STAG2

Receptor tyrosine kinase (RTK) (N=34): ALK, CBL, CSF1R, 
DDR2, EGFR, EPHA3, EPHA5, EPHB1, ERBB2, ERBB3, ERBB4, 
FGF19, FGF3, FGF4, FGFR1, FGFR2, FGFR3, FGFR4, FLT1, 
FLT3, FLT4, HGF, IGF1R, KIT, MET, NF1, NTRK1, NTRK2, NTRK3, 
PDGFRA, PDGFRB, PTPN11, RET, ROS1

Homologous recombination deficiency (HRD) (N=11): BRCA1, 
BRCA2, PALB2, ATM, CHEK1, CHEK2, RAD51, FANCA, CDK12, 
RAD51B, RAD51C

mTOR pathway (N=16): AKT1, AKT2, AKT3, CRKL, IRS2, MTOR, 
PIK3CA, PIK3CG, PIK3R1, PIK3R2, PTEN, RICTOR, RNF43, 
RPTOR, TSC1, TSC2

TGF-β pathway (N=5): SMAD2, SMAD3, SMAD4, TGFBR1, 
TGFBR2
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