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Paige Predict

An Al-enabled digital pathology application for
biomarker status prediction

Introduction

When a tissue sample is insufficient for sequencing (QNS), it can
leave providers without the genomic results needed to inform
the next steps in a patient’s care. Reattempting sequencing
requires significant tissue, and prioritizing targeted biomarker
testing may be difficult.

To help inform testing prioritization and diagnostic yield, Tempus
developed Paige Predict. This Al-enabled digital pathology
application analyzes a hematoxylin-and-eosin (H&E) stained
whole slide image (WSI), digitized as part of our standard lab
process, to predict the likelihood of key biomarkers when a
Tempus xT test results in a QNS. Powered by a state-of-the-

art Paige Foundation Model pre-trained with three million
diverse pathology slides, Paige Predict identifies the phenotypic
signatures of 123 molecular biomarkers and oncogenic
pathways across 16 cancer types.

For each molecular biomarker and oncogenic pathway, Paige
Predict calculates the positive likelihood ratio, relative to the
patient’s specified disease cohort. The positive likelihood ratio,
which measures the strength of the application’s predictions,
compares the probability that the relevant alteration is
confirmed by subsequent definitive testing with the probability
that alteration is not confirmed. Paige Predict then calculates a
“Paige Prediction”, which considers both the general prevalence
of the alteration within the patient’s cancer cohort, and the
strength of the predictions as measured by positive likelihood
ratio. The Paige Prediction reflects the revised expectations,
after incorporating both prevalence and the Paige Predict
results, that the patient’s sample will have a positive result for
the alteration in a confirmatory test. The results also categorize
the molecular features into Elevated, Typical, and Reduced
Likelihood groups relative to the patient’s cohort based on the
calculated likelihood ratio.

These predictions provide clinically relevant information to help
inform confirmatory testing strategies, maximizing the likelihood
of receiving an actionable result before exhausting tissue. Paige
Predict results are probabilistic predictions, so they should not
be used to determine treatment eligibility or as evidence of
actual biomarker status.
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Analytical validation and performance

The Paige Predict validation study cohort consisted of 7,717
H&E-stained WSIs from samples sequenced using the Tempus
XT assay, representing a broad range of solid tumor types (see
table in appendix). Each molecular feature was represented by
a minimum of 20 positive and 20 negative quality-controlled
samples, and is statistically representative of a larger cohort of
Tempus real-world data.

Each biomarker and oncogenic pathway within each cancer
cohort was evaluated across multiple experiments to evaluate
analytical accuracy, analytical sensitivity and specificity, and
analytical robustness. The analytical validation heavily focused
on evaluating the performance of Paige Predict in samples with
limited tumor content, so that it would be more representative
of the subset of samples where tissue-based sequencing results
ina ONS.

Each molecular feature within each cancer cohort met the
following acceptance criteria:

= Minimum analytical accuracy criteria, for which each feature
must demonstrate overall performance, measured using
the area under the receiver operating characteristic curve
(AUC), of >0.70 when evaluated against ground truth from
the Tempus xT assay.

= Limited performance regression and model stability, within
defined bounds, when evaluated on samples with limited
tumor content. These experiments defined the limit of
detection (LoD) and specimen requirements for Paige
Predict.

= Tumor content, including both tumor area and the ratio
of tumor tissue to normal tissue, was evaluated for each
sample. As tumor content decreased, Paige Predict’s
performance (AUC) was re-measured to confirm a
performance difference of no more than 5% compared
to the full slide reference AUC, and prediction root mean
square error (RMSE) of less than 0.1.

= Across the assay, the LoD was established as a combination
of a minimum tumor area of >1.5 mm? with a tumor-to-
tissue ratio of > 20%. All biomarkers and molecular features
meet the defined acceptance criteria at the established LoD.

= Robustness to potential interferences, including blur or
scanning artifacts, and concordance between multiple
different WSI scans generated from different scanning
machines of the same type.

= Each slide was initially reviewed by a qualified pathologist
to confirm the WSI was interpretable. For slides passing
pathology QC, all samples generated Paige Predict results.

= To evaluate reproducibility of the predictions across
scanning machines, a subset of 300 samples, with
representation from each cancer cohort, was rescanned
on a different scanner machine of the same type; RMSE
remained <0.1 for all molecular features.
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For Paige Predict validation, oncogenic molecular pathways are
defined by alterations detected in any of these variants:

DNA damage response (DDR) (N=23): ATM, ATR, ATRX, BRCA1,
BRCA2, BRIP1, FANCA, FANCC, FANCD2, FANCE, FANCF,
FANCG, FANCL, MDM2, MDM4, MLH1, MUTYH, NPM1, PALB2,
PPP2R1A, RAD50, RAD51, STAG2

Receptor tyrosine kinase (RTK) (N=34): ALK, CBL, CSF1R,
DDR2, EGFR, EPHA3, EPHAS5, EPHB1, ERBB2, ERBB3, ERBB4,
FGF19, FGF3, FGF4, FGFR1, FGFR2, FGFR3, FGFR4, FLT1,
FLT3, FLT4, HGF, IGFAR, KIT, MET, NF1, NTRK1, NTRK2, NTRK3,
PDGFRA, PDGFRB, PTPN11, RET, ROS1

Homologous recombination deficiency (HRD) (N=11): BRCA1,
BRCA2, PALB2, ATM, CHEK1, CHEK2, RAD51, FANCA, CDK12,
RAD51B, RAD51C

mTOR pathway (N=16): AKT1, AKT2, AKT3, CRKL, IRS2, MTOR,
PIK3CA, PIK3CG, PIK3R1, PIK3R2, PTEN, RICTOR, RNF43,
RPTOR, TSC1, TSC2

TGF-B pathway (N=5): SMAD2, SMAD3, SMAD4, TGFBR1,
TGFBR2
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